Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Science Intern

Hirist
Leeds
6 months ago
Applications closed

Related Jobs

View all jobs

Principal Data Scientist

Data Architect - London - Databricks - 110k + Bonus

Data Analyst - United Kingdom (London)

Strategic Quantitative Risk Manager

Safety Management & Food Data Analyst - Placement Year

Power BI Data Analyst

Summer Internship – Data Science (Beginner to Intermediate Levels Welcome)

Duration:3 Months | Remote | Flexible Start

Hiring Partner:HIRIST – IT Recruitment Partner

Client:Reputed IT Company (Name confidential)


Are you passionate about data and eager to apply your skills in real-world projects? Whether you're just starting out or already have some hands-on experience — this is a chance to be part of alive data science teamsolving actual business problems.


HiRIST is hiringData Science Internson behalf of one of our IT clients for asummer internship programfocused on building real solutions, not simulations or training demos.


What You’ll Work On:

• Collaborate with senior data scientists onlive projects

• Assist incleaning, organizing, and analyzing datasets

• Contribute tofeature engineeringfor machine learning models

• Learn howA/B testsand data experiments are designed and analyzed

• Help builddashboards or visualizationsthat support business decisions


🔍Who Should Apply:

This internship is ideal for:

• Students or recent grads fromany STEM or analytical background

• Candidates who areself-taught in Python, SQL, or basic data analysis

• Beginners who havedone personal projects, academic work, oronline coursework

• Intermediate learners looking to gainreal project experience

Youdon’t need to be an expert— you just need to be willing to contribute, learn fast, and work hard on real tasks under mentorship.


🧠Must-Have Skills:

• Basic knowledge ofPythonand/orSQL

• Curiosity and willingness to work with data

• Familiarity with any one:Excel, Pandas, Numpy, or visualization tools

• Good communication and time management skills


🌟Nice-to-Have (But Not Required):

• Experience withdata cleaning, modeling, or dashboards

• Understanding ofstatistics or A/B testing

• GitHub or portfolio of data projects (even academic ones)


🎁Perks & Benefits:

1:1 mentorshipfrom a senior data scientist on the same project

• Exposure toreal industry-level projects

Internship Certificateat the end of the program

Letter of Recommendationbased on performance

Stipend opportunityfor selected interns (based on skill level and contributions)


🔎Selection Process:

1. Resume Screening (emphasis on interest and motivation)

2. Basic Aptitude/Data Task (suitable for beginners too)

3. Friendly Interview with Mentor/Manager

4. Final Selection & Onboarding via HiRIST


📝Apply If You:

• Are available for 4-12 weeks

• Can commit at least15–20 hours/week

• Are excited to work in areal tech team, not a training bootcamp

• Want to addreal business project experienceto your resume


📩Ready to Get Started?

Apply with yourresume + any portfolio link or project sample (optional).


HiRIST– Connecting the right talent with the right opportunity.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.