Data Science Associate Partner

Open Partners
Manchester
4 days ago
Create job alert
Overview

The Data Science Associate Partner is responsible for querying internal and external databases to build automated pipelines for measurement projects and actively developing clean, clear and robust Media Mix Models. You will leverage your analytical skills to extract actionable insights from econometric models and communicate the results clearly to impact strategic media decisions.

Role Responsibilities
  • Data Integration: Query internal and external databases using SQL and Python to build automated pipelines for measurement projects.
  • Media Mix Model: Produce strong, reliable Media Mix Models anchored in a clear, documented process that ensures total transparency for our clients
  • Strategic Growth: Work closely with our Senior Data Partner and Measurement Partner to proactively identify opportunities for client change.
  • Innovation: Stay at the forefront of the industry by completing leading certifications and applying new methodologies to our MMM framework.
  • Design and execute end-to-end Econometric projects.
  • Extract and communicate actionable insights through experimentation and machine learning.
  • Provide clean and clear data analysis to media channel leads and strategic partners.
  • Assist with the ongoing development of the MMM proposition offered at Open Partners, including the development of a Unified Measurement Platform.
Reports to

Reports to: Liam Middleton (Measurement Partner)

Responsibilities/What you're responsible for

Responsible for: Data Science, Machine Learning and Experimentation, Data cleaning and preparation for large data projects, result and insight collation and aggregation across the client base.

Location

Location: Manchester & Hybrid.

Hours

Hours / Days: 37.5 hours, over 5 days per week.

Contract

Contract basis: Permanent.

To be successful in this role

To be successful in this role:

  • 2+ years of experience specifically within media measurement or marketing analytics.
  • Technical Toolkit: Proficient in Python, R and SQL. Experience with BigQuery and the Google Cloud Platform ecosystem is highly desirable.
  • Analytical Mindset: A strong understanding of statistical modeling and a passion for solving the "attribution puzzle."
  • Communication: Ability to work effectively in a remote/hybrid environment, maintaining high levels of transparency and collaboration.
  • Adaptability: A "Smarter, Faster" approach—comfortable challenging the status quo to find a better way of working.
Skills & Experience required

Skills & Experience required:

  • Must Have:
  • Advanced SQL & Python/R..
  • Understanding of the application of the scientific method to media measurement.
  • High level of Microsoft Excel / Google sheets skills.
  • Understanding of Frequentist and Bayesian approaches to Media Mix Modelling
  • Experience with Google Cloud Platform (GCP) and BigQuery.
  • Experience in marketing (offline and online) data.
  • Advanced coding/version control skills (e.g. GitHub).
  • Experience with open source MMM modelling algorithms (Meridian / Robyn)
Expectations for all Open Partners Employees

Expectations for all Open Partners Employees:

  • Follow our Employee Handbook
  • Live by our values
  • Smarter - Aim high, train hard, embrace next


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Science Partner: Media Mix & Insight Architect

Data Governance (KTP Associate) - (8829)

Data Governance (KTP Associate)

Azure/Databricks Data Engineer

Data Architecture Associate Manager

Data Architecture Associate Manager

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.