Data & Research Manager

Network Talent
Bristol
3 months ago
Applications closed

Related Jobs

View all jobs

Senior) Research Manager Remote/Hybrid

Senior Research Manager (Quantitative)

Research Manager (Education)

Research Manager (Brand Design)

Research Manager - Quantitative

Quantitative Trader - Exchange (must have crypto or HFT experience)

Data & Research Manager


Our client is a fast-growth global organisation who provide a range of data & research services into the creative industry. With example clients including the likes of Channel 4 & ITV, their services allow for organisations to collate employee feedback and respond to actionable insights to improve employee satisfaction.


They are looking for a Data & Research Manager to join their organisation; this is an all-encompassing role involving scaling & developing the current Data & Research Team as well as managing the full lifecycle of their research projects. This role offers a great level of exposure to a range of clients & projects and is a fantastic opportunity to be building relationships with senior stakeholders across the creative sector.


They have a first-class leadership team in place who have a great track record in scaling & developing organisations within the sector, with culture at the forefront of what they do.


This position is fully remote.



Responsibilities


  • Scale & develop current team of Data Analysts, providing ongoing training and creating a collaborative & motivated team environment
  • Manage & launch project, contributing to data collection (qualitative & quantitative), data analysis and reporting
  • Manage the full project lifecycle from inception to delivery, working with set timelines & budgets provided
  • Collaborate with internal leadership team to align on strategy and research activities
  • Create & present clear reports into data collected, providing actionable insights to all clients
  • Maintain high standard of ethics, prioritizing integrity across the role


The Successful Candidate


  • 5+ years’ experience in research or data analytics roles
  • Experience leading & scaling a team is essential
  • A link to the creative industry (TV, film, broadcast, modelling) would be a plus, but is not essential
  • A degree in a related field would also be a plus e.g. Data Science, Psychology, Sociology, Statistics, Business Analytics
  • Based in Europe / USA


Data & Research Manager Package


  • Salary: £60,000-70,000
  • Healthcare options
  • Pension options
  • 25 days annual leave plus bank holidays

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.