Data Platform Engineer

Zimmer Biomet
Brighton
10 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

JOB DESCRIPTION

At Zimmer Biomet, we believe in pushing the boundaries of innovation and driving our mission forward. As a global medical technology leader for nearly 100 years, a patient’s mobility is enhanced by a Zimmer Biomet product or technology every 8 seconds.

As a Zimmer Biomet team member, you will share in our commitment to providing mobility and renewed life to people around the world. To support our talent team, we focus on development opportunities, robust employee resource groups (ERGs), a flexible working environment, location specific competitive total rewards, wellness incentives and a culture of recognition and performance awards. We are committed to creating an environment where every team member feels included, respected, empowered, and recognized.


What You Can Expect


The Senior Data Platform Engineer will be responsible for the development of data platforms which serve the needs of our development teams and data products that improve the quality-of-care and quality-of-life of Orthopaedic patients worldwide. The Connected Health AI and Data Science Team’s existing platform is evolving from batch processing to cater for real-time and Generative AI solutions, the Data Platform Engineer will play a critical role in driving the growth and adoption of this platform.
 

How You'll Create Impact

Work closely with machine learning scientists and engineers to develop data serving platforms and platforms that power products on Microsoft Azure that process both real-time and batch data from diverse sources; Integration of third-party platforms and software to build a platform for the efficient onboarding and manipulation of data; Continuously identify areas for system improvements, focussing on enhacing both backend efficiency and user experience; Develop re-usable architectures and infrastructure via Infrastructure as Code for use in current and future products; Fulfilling regulatory commitments through the use of automation; Contribute to the shaping of the technological roadmap to help progress the Connected Health team;
 

What Makes You Stand Out

Proficiency in the following tools:

Python for developing data pipelines; Apache Spark for the ingestion and transformation of data; SQL databases; Data stores such as Azure Blob Storage, Azure Data Lake, S3, Azure Cosmos DB; Infrastructure as code tooling such as Terraform, Pulumi, Bicep; Git and CI/CD pipeline tooling;

Your Background

Experience/competency in the following areas:

Strong communication skills as this position works as part of a cross-disciplinary product team; Programming with Python and packages associated with the data engineering workflow; Awareness of machine learning techniques and their applications; Apache Spark and Apache Airflow for ETL pipelines; Developing applications to run on the cloud in a cloud-native way; Data pipeline, application and infrastructure monitoring with tools such as NewRelic; Familiarity with infrastructure concepts such as virtual machines and networking; Communicating analyses, technical ideas, and their value to a range of audiences; Ability to learn new technologies and methodologies;

Some experience in one of the following areas is beneficial, but not essential: 

Data quality monitoring Working with healthcare data; Working with and deploying applications to Kubernetes, Managed Container Environments; Working with Azure data tools such as Synapse or Fabric; Delivering software and/or artificial intelligence/machine learning in regulated spaces;

Travel Expectations


This role is home-based and the team embraces a culture of remote-first. The team regularly meets once every fortnight in Central London, but individuals can decide in-conjunction with the rest of their team whether to meet others in the team more or less regularly depending on their circumstances.

This role works closely with team members based in the U.S. therefore, occasional evening meetings will be required. There also may be occasional travel to the U.S. for internal meetings, and also travel in UK/Europe to meet with customers.
 


EOE/M/F/Vet/Disability

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.