Data Operations Engineer

Manchester
10 months ago
Applications closed

Related Jobs

View all jobs

Data Engineering Lead – Platform & Analytics APAC

Lead Data Engineer: DBT & Modern Data Pipelines

Senior Data Engineer (DBT) — Build Scalable Data Pipelines

Master Data Lead - Data Quality & Governance

Hybrid Data Engineer: Scalable Pipelines & Real-Time Data

Senior Data Engineer: Pipelines Reliability & Security

The Role: DataOps Engineer

As a DataOps Engineer, your responsibilities will span the development and implementation of automated solutions for data integration, quality control, and continuous delivery. This role demands a solid grounding in software engineering principles, fluency in programming languages such as Python or Scala, and an adeptness with DevOps tools. You'll play a crucial role in constructing and maintaining sophisticated data pipelines that support the organization's data science and analytics ambitions.

Collaboration is a cornerstone of this position. You will work closely with teams across the organization, assimilating their data requirements and challenges, and crafting agile, robust data solutions. Your efforts in implementing best practices in DataOps will aim to eliminate bottlenecks, elevate data quality, and ensure that data management processes are in tight alignment with our strategic analytics and decision-making objectives.

In this role, automating data pipelines and implementing scalable solutions will be just the beginning. You will also ensure data availability and integrity through effective governance, advocate for DataOps methodologies alongside IT and data teams, and continuously monitor, troubleshoot, and optimize data systems for superior performance.

 Skillset:-

Advanced proficiency in database technologies such as SQL Server, Oracle, MySQL, or PostgreSQL for data management and querying.

Expertise in implementing and managing data pipelines.

Strong understanding of data warehousing concepts, data modelling techniques, and schema design for building and maintaining data warehouses or data lakes.

Proficiency in cloud platforms such as AWS, Azure, or Google Cloud for deploying and managing scalable data infrastructure and services.

Knowledge of DevOps principles and practices for automating infrastructure provisioning, configuration management, and continuous integration/continuous deployment (CI/CD) pipelines.

Strong scripting and programming skills in languages like Python, Bash, or PowerShell for automation, data manipulation, and orchestration tasks.

Ability to collaborate with cross-functional teams including data engineers, data scientists, and business stakeholders to understand requirements, design data solutions, and deliver projects.

Excellent communication skills to effectively convey technical concepts to non-technical stakeholders and collaborate with team members.

Strong problem-solving skills to troubleshoot data issues, optimize performance, and improve reliability of data pipelines and infrastructure.

Ability to stay updated with emerging technologies, trends, and best practices in the field of DataOps and data engineering.

Initiative and drive to continuously improve skills, automate repetitive tasks, and streamline data operations processes for increased efficiency and productivity

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.