Data Engineering Manager

Diagonal recruitment
City of London
3 weeks ago
Create job alert

*our client is unable to offer sponsorship - only apply if you have the right to work in the UK


Overview


Our client is a well-funded startup (c200 people) and readying to scale. They have award-winning solutions in the fast-moving digital advertising space with petabyte scale proprietary data.


The Role


We're seeking a hands-on Data Engineering Manager to lead a team of Data Engineers and work alongside the Head of Engineering and Principal Data Architect and the Product team.


You will join a Product, Data and Engineering org of 50+ people based out of London and NYC and will create the standard for the data practice and ensure best in class design and delivery, working across multiple products covering audience insights, analytics and advertising.


You'll be relied upon to get the data stack AI ready, drive innovation and leverage Agentic development where its needed.


Technology / Skills requirements


  • SQL and another language e.g. Python
  • ELT/ETL
  • CI/CD
  • Data Modelling
  • Data Architecture
  • Data Frameworks
  • dbt
  • Data processing and orchestration using Airflow or similar
  • Google BigQuery or Redshift
  • Cloud based services: GCP (preferred) or AWS
  • Agentic development frameworks
  • Automations


About You


  • 6 years+ experience as a Data Engineer solving complex and scaled data challenges
  • 2 years as a manager or mentor or data engineers
  • Problem-solver mindset and think creatively with data
  • You welcome responsibility and want to shape products
  • Can understand business requirements and translate into technical output and vice versa
  • Excellent communicator able to distil down complex matters to various stakeholders


What's on offer


  • Work alongside some of the brightest minds and leading advertising technologies
  • Shaping the future of online advertising
  • A genuinely memorable experience you will look back on fondly
  • Health & Wellness package
  • Medical Insurance
  • Income Protection
  • Childcare vouchers
  • Gym & Cycle scheme
  • Pension
  • Life Assurance
  • Hybrid working (2-3 days) from a Central London office
  • 30+ holidays plus bank holidays (pro-rated)
  • Lots of one-off and regular treats & socials


We're screening & interviewing right away - so apply now if this sounds like you - or get in touch if you know someone that might be more closely suited for a generous referral fee

Related Jobs

View all jobs

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Data Engineering Manager

Engineering Manager, Data Engineering

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.