Data Engineering Lead - Finance and Master

Mars Petcare UK
London
3 weeks ago
Applications closed

Related Jobs

View all jobs

Data Engineering Lead

Data Engineering Lead

Data Engineering Lead / Data Architect

Data Engineering Lead

Data Engineering Lead - AWS & Snowflake

BI & Data Engineering Lead

Job Description:


Is this the next step in your career Find out if you are the right candidate by reading through the complete overview below.

Are you passionate about Data and Analytics (D&A) and excited about how it can completely transform the way an enterprise works? Do you have the strategic vision, technical expertise, and leadership skills to drive data-driven solutions? Do you want to work in a dynamic, fast-growing category? If so, you might be the ideal candidate for the role in the Data and Analytics function for Global Pet Nutrition (PN) at Mars. Pet Nutrition (PN) is the most vibrant category in the FMCG sector.

As we work to transform this exciting category, a new program, Digital First, has been mobilised by the Mars Pet Nutrition (PN) leadership team. Digital First places pet parents at the center of all we do in Mars PN, while digitalizing a wide range of business process areas, and creating future fit capabilities to achieve ambitious targets in top line growth, earnings, and pet parent centricity. The Digital First agenda requires Digitizing at scale and requires you to demonstrate significant thought leadership, quality decision making, deep technical know-how, and an ability to navigate complex business challenges while building and leading a team of world class data and analytics leaders.

With Digital First, PN is moving to a Product based model to create business facing digital capabilities. Develop and maintain robust data pipelines and storage solutions to support data analytics and machine learning initiatives. Reporting to the Director-Data engineering solution, The role operates globally in collaboration with teams across finance and master data functions

Key Responsibilities

Leadership and Team Management

  • Lead and mentor a team of data engineers and DevOps engineers.

  • Provide guidance and support in the design, implementation, and maintenance of data assets.

  • Foster a collaborative and high-performance team culture focused on innovation and excellence

Data Asset Delivery:

  • Drive the end-to-end delivery of data products.

  • Collaborate closely with cross-functional teams to understand business requirements and translate them into technical solutions.

  • Ensure timely and accurate delivery of data products that meet business needs and quality standards.

DataOps and Optimisation:

  • Implement DataOps practices to streamline data engineering

  • workflows and improve operational efficiency.

  • Automate data pipeline deployment and monitoring using CI/CD tools.

Technical Leadership:

  • Provide technical leadership and guidance on data engineering best practices.

  • Stay informed about industry trends and emerging technologies in data engineering and analytics.

Standardisation and Governance:

  • Ensure adherence to data governance policies, procedures and standards. Implement best practices for data management, security, and compliance. Promote data quality and integrity across all data products.

  • Monitor data pipeline performance and optimise for scalability, reliability, and speed.

Stakeholder Engagement:

  • Collaborate with PN D&A leadership, PN product owners, and segment D&A leadership to synchronise and formulate data priorities aimed at maximising value through data utilisation.

#TBDDT

Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.