Data Engineering & Analytics Manager

OME
West Yorkshire
3 weeks ago
Create job alert

Job Description:

Reporting to theGeneral Manager of Data Engineering & Analytics, you’ll manage several multi-disciplinary data delivery teams aligned to one of our key customer journey stages with a remit to deliver a wide variety of data analytics, and data integration initiatives.
 
As our Data Engineering & Analytics Manager, you’ll have access to a wide range of benefits including:
  • Hybrid working (we’re in the office 3 days per week)
  • Annual pay reviews
  • Colleague discounts onJet2holidaysandJet2.comflights
 
What you’ll be doing:
 
As an Data Engineering & Analytics Managerin our Data teams, you’ll lead across 4 key areas: -
 
  • Data Delivery– You’ll be responsible for the delivery performance of your teams and ensure key delivery metrics are closely monitored and allow you to best provide support where needed.
  • Data Culture– You’ll drive a data-first culture both within the data team and across the business by supporting continual learning and development across your teams and the wider business
  • Data Architecture & Solution Design– You’ll support the optimisation of our data architecture, working closely with other data managers and our data architecture team
  • Team Leadership– You’ll manage several multi-disciplinary data delivery teams consisting of Data & Analytics Engineers and Test Engineers with Data Scientists and Data Visualisation specialists embedded as required.
 
What you’ll have:
 
  • Communication and Management– Strong communication skills will be needed to influence teams and stakeholders at all levels of the organisation from Engineers to C-level. The role manages several multi-disciplinary teams, so you’ll be experienced in setting direction and communicating priorities clearly
  • Analytical Focus- You should have practical experience helping business users to translate analytical requirements into technical solutions and ensuring that the right analytical questions are being asked
  • Technical Ability – Strong proficiency needed in designing and delivering data and analytics solution across multiple platforms as well as strong understanding of cloud platforms such asAWS, AzureandGCP(AWS is preferred). Desirable expertise in the following:
    • Data Warehousing –Snowflake(preferred),Google BigQuery, AWS RedshiftorAzure Synapse.A good understanding, and practical experience, of analytical data modelling techniques is essential (e.g. dimensional modelling, data vault, etc)
    • Data Pipelines – Experience working with a wide variety of data sources and data transformation techniques
    • Data Visualisation - Although we have dedicated data visualisation specialists within the team, any knowledge of, or experience with, data visualisation platforms such as Tableau (preferred) would be beneficial
 
This role will likely be focused in our finance and corporate applications domain initially so although prior experience of working in a finance domain is not essential, any experience in this area would be a distinct advantage.
 
#LI-Hybrid
#LI-MW2

Related Jobs

View all jobs

Data Engineering Manager (Portsmouth)

Data Engineering Manager

Data Engineering Manager

Analytics Engineering Manager

Data Engineering Manager (London Area)

Data Engineering Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.