Data Engineer | Various Levels | Competitive package

Belfast
4 weeks ago
Create job alert

Overview
Are you passionate about transforming raw data into powerful insights that drive innovation and impact? Join a forward-thinking consultancy that combines strategy, design, and engineering to deliver cutting-edge digital solutions at scale.
This is a unique opportunity to work in a collaborative, cross-functional team environment where curiosity, creativity, and technical expertise are celebrated. You’ll help clients tackle complex challenges and adapt to a fast-changing world, using cloud technologies and modern data practices to make a lasting difference.

What You’ll Be Doing

Design and deploy scalable data pipelines from ingestion to consumption using tools like Python, Scala, Spark, Java, and SQL.
Integrate data engineering components into wider production systems in collaboration with software engineering teams.
Work with large volumes of structured and unstructured data from diverse sources, applying robust data wrangling, cleaning, and transformation techniques.
Develop solutions in AWS using services like EMR, Glue, RedShift, Kinesis, Lambda, and DynamoDB (or equivalent open-source tools).
Apply your knowledge of batch and stream processing, and where applicable, contribute to data science and machine learning initiatives.
Operate in Agile environments and actively participate in Scrum ceremonies.
Use your understanding of best practices in cloud-native data architecture, including serverless and container-based approaches.What We’re Looking For

Proven experience designing and building data pipelines and data architectures in cloud environments, particularly AWS.
Strong coding ability in languages such as Python, Java, or Scala.
Hands-on experience with data ingestion, transformation, and storage technologies.
Familiarity with data visualization, reporting, and analytical tools.
Comfortable working in Agile teams and contributing to all stages of development.
Willingness to travel to client sites when necessary.Desirable Skills

Experience with AWS-native tools for data processing (EMR, Glue, RedShift, Kinesis, etc.).
Familiarity with open-source equivalents is also welcome.
Knowledge of machine learning, data mining, or natural language processing is a plus.
Understanding of platform-as-a-service (PaaS) and serverless architectures.
Unfortunately this role cannot offer sponsosrship, as candidates must be SC eligible

Related Jobs

View all jobs

Data Engineer

Senior Data Engineer

Data Engineer - Python & Azure

Data Engineer - Python & Azure

Data Engineer - Python & Azure

Data Architect

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.