Data Engineer - Remote - Global Tech Company - £80,000 - Snowflake/ DBT/ SQL/ Airbyte

Opus Recruitment Solutions
united kingdom, united kingdom
4 days ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

I am representing a global tech company driven by innovation, who are looking for a talented Data Engineer to join their cutting-edge team. This is a FULLY REMOTE role but will require you to be available to travel occasionally to their London office.


You will work on a very exciting and innovate list of projects for the business and really spearhead a new data platform being built.


They are looking for intelligent, self motivated & resourceful problem solvers! Someome who can figure out a problem and work through the best solution.


What We're Looking For:


  • 3-5 years of experience in Data Engineering or analytics engineering, with a track record of building and optimizing complex pipelines in big data environments.
  • Proficiency in SQL for data transformation and manipulation + some Python is a plus
  • Strong knowledge of modern data stack tools, including Airbyte, dbt (MUST HAVE), Snowflake, and cloud platforms like AWS.
  • Familiarity with data modelling concepts and warehousing best practices, including dimensional modelling.
  • Experience delivering data solutions using software engineering principles, including version control (GitHub).
  • A proactive approach to problem-solving, with the ability to identify optimization opportunities and drive continuous improvement.
  • PowerBI
  • Azure Datalakes
  • Github/ Version Control


What You'll Do:


  • Design, develop, and optimize scalable ELT pipelines, ensuring reliable data delivery from diverse sources such as APIs, transactional databases, file-based endpoints, and S3 buckets.
  • Build and maintain a robust Data Platform using tools like Airbyte, dbt, and Snowflake.
  • Collaborate with product and regional teams to design data models and workflows that drive decision-making and analytics across the company.
  • Mentor junior team members and champion best practices in data engineering, including code reviews, testing, and pipeline orchestration.
  • Tackle technical debt by modernizing outdated code and improving efficiency within the data stack.
  • Implement data governance policies, including standards for data quality, access controls, and classification.


Abilities:


  • Positive and solution-finding attitude when faced with challenges, confidence to perform own role without unnecessary support in normal circumstances.
  • Independent, a quick learner, and comfortable taking on responsibility.
  • Strong communication and interpersonal skills, aligned with company values.
  • Fluent in English; additional language skills are a plus.


What We Offer:

  • Work in a dynamic, international company with significant potential for fast professional growth and personal development.
  • Embrace a fully remote culture: Work from anywhere, with occasional visits to our London office once or twice a quarter.
  • Shape a brand new Data and Dashboard team and contribute to building a cutting-edge Data Platform.
  • Join an organization that prioritizes diversity, inclusion, and equity, fostering a supportive workplace culture.
  • Work on high-impact projects with the latest technologies in data and analytics.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.