Data Engineer / Quantitative Modeler - NEW YORK - USA

Park Lane Recruitment
1 year ago
Applications closed

Related Jobs

View all jobs

DevOps Engineer Quantitative Systems

Data Engineer - Trading Platform - Global Quant Firm

Data Engineer - Trading Platform - Global Quant Firm

Data Engineer

Data Engineer

Data Engineer - Proprietary Trading Firm

 Data Engineer / Quantitative Modeler
 
- NEW YORK
- USA

 
Work Experience (Years): 2 - 4
 
Salary : $185000 - $225000
 
Other Compensation : Bonus
 
Degree : University - Bachelor's Degree/3-4 Year Degree
 
Remote Status: No Remote
 
Client Willing to Sponsor: Yes
 
Relocation Paid: Yes
 
Industry(ies): Information Technology, Professional Services, Real Estate/ Mortgage, Research & Development Services
 
Primary Skills: Python
 
Occupational Categories: Accounting/ Financial Services/ Investing
 
Job Description :
Quantitative Modeler / Data Engineer :
We are looking for a highly motivated and talented Quantitative Software Developer / Credit Modeler with a strong academic background and a passion for data, machine learning and the desire to join a strong, collaborative team. 10 Billion AUM Hedge Fund, our client is committed to developing state of the art models and technology, driving our investment and risk management decision making processes. This platform is driven by cutting-edge, cloud-based data & ML solutions.
 
MUST BE FAMILIAR WITH HACKERRANK TESTS.
 
Qualifications:

  • BS in Computer Science, Statistics/Data Science, Mathematics, or Financial Engineering degree from a top university.  MS degree preferred
  • 2-4 years’ experience as a research modeler / quant developer in a hedge fund, asset manager, banking, or fintech environment focused on structured products or consumer credit
  • Proven modeling skills in R and Python.  Experience building loan-level credit / prepayment models through all stages from data preparation, data analysis, model estimation through deployment into production
  • Experience with generalized regression models as well machine learning frameworks
  • Very strong programming and software design skills (Python, C++) required
  • Very strong SQL and DB skills for creating/maintaining necessary tables for data preparation and analysis
  • Excellent communication skills and ability to work collaboratively in a team environment with a flexible, organized, and driven personality
  • Enthusiastic about leveraging models into the firm’s investment process in the structured credit space (RMBS, CMBS, ABS, CLOs)
  • Knowledge of structured products and/or risk management in a fixed-income environment is required
  • Experience creating visualization tools for monitoring or model performance adjustment in a modern JS framework (React, Angular, Vue) is a plus

Responsibilities:

  • This is a hybrid credit modeling / software development role
  • Estimate / develop and enhance credit models in the securitized products (RMBS/CMBS/ABS/CLO) space via data driven credit risk analysis
  • Develop production quality ETL and data integrity processes to build and maintain credit models
  • Create visual tools for monitoring, back testing and adjusting model performance
  • Develop tools to analyze bid lists, dealer offerings, and new issue deals in the structured credit space with an eye towards automation
  • Collaborate with data scientists, analysts, traders, and other stakeholders to understand requirements and deliver high-quality data solutions

Why is This a Great Opportunity:

  • Competitive salary and benefits package.
  • A dynamic and inclusive work environment with opportunities for professional growth 
  • Access to the latest technologies and tools in the data engineering field
  • Support for continuous learning and career development

 
 
IND123

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.