DATA ENGINEER (MICROSOFT AZURE & FABRIC)

London
3 weeks ago
Create job alert

ABOUT DIGIMASTERS

Digimasters Ltd was founded in 2017 as a digital transformation consultancy focused on technology, business process optimisation and data analytics. Digimasters works across all industries and provides experience in organisations of all sizes. Primarily based in London, UK, we work in many regions including the US, EU, APAC and the Middle East. Digimasters takes on additional talent during large programmes of work. For our engagements with clients in Architecture, Engineering, and Construction (AEC), as well as other sectors, we have several roles supporting the delivery of technology, business change, and data programmes.

THE ROLE

We are looking for an experienced Data Engineer to join our delivery team on a contract basis, with a specific focus on designing, building, and optimising data solutions on Microsoft Azure and Microsoft Fabric. This role is critical to helping our clients unlock the full value of their data assets, supporting advanced analytics, reporting, and digital transformation. The ideal candidate will be confident working with a modern data stack, automating data pipelines, and delivering reliable, scalable, and high-quality data solutions in enterprise environments. This position reports to the Managing Director of Digimasters and will work closely with our clients’ technical teams, as well as internal data architects, analysts, and governance specialists.

RESPONSIBILITIES

  • Design, build, and maintain scalable data pipelines and data integration workflows using Microsoft Azure services such as Data Factory, Synapse Analytics, Data Lake, Databricks, and related technologies.

  • Implement and support Microsoft Fabric solutions, including dataflows, data warehouses, and real-time analytics features. Develop and maintain ETL/ELT processes to support business reporting, analytics, and machine learning.

  • Optimise data architectures for performance, reliability, and cost efficiency in cloud environments.

  • Collaborate with data architects, analysts, and business stakeholders to gather requirements and deliver data solutions aligned with business goals.

  • Ensure high-quality, secure, and compliant data management practices, in line with G.D.P.R. and relevant data regulations.

  • Support the migration and modernisation of legacy data systems into Azure and Microsoft Fabric environments.

  • Monitor, troubleshoot, and improve data workflows, implementing automation and error-handling as needed.

  • Produce and maintain technical documentation for data pipelines, architecture, and best practices.

    EXPECTATIONS IN THE ROLE

  • Strong hands-on experience with Microsoft Azure data services (Data Factory, Synapse Analytics, Data Lake, Databricks).

  • Direct experience delivering solutions using Microsoft Fabric. Advanced SQL skills and experience with data modelling, transformation, and integration.

  • Familiarity with data governance, data quality, and compliance frameworks.

  • Ability to work independently and collaboratively in a fast-paced, client-facing environment.

  • Excellent communication skills, able to translate technical solutions into business value.

    QUALIFICATIONS

  • Bachelor’s degree in Computer Science, Data Engineering, Information Systems, or a related field preferred.

  • At least 3 years of experience as a Data Engineer, ideally in consulting, professional services, or large enterprise environments.

  • Demonstrable expertise in building data pipelines and cloud data solutions on Azure.

  • Experience with Microsoft Fabric is strongly preferred.

  • Knowledge of Python or other scripting languages is an advantage.

  • Certification in Microsoft Azure Data Engineering or related is a plus.

    This is a Hybrid role and does require candidates to work in central London as well as remotely. We do not sponsor visas so you must be eligible to already work in the UK

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.