Data Engineer Manager

Young's Employment Services Ltd
Greater London
6 days ago
Create job alert

Data Engineer Manager
Hybrid - London with 2/3 days WFH
Circ £85,000 - £95,000 + Attractive Bonus & Benefits

Hands On Data Engineer Manager required for this exciting newly created position with a prestigious and rapidly expanding business in West London. It would suit someone with official management experience, or potentially a Lead / Senior Engineer looking to take on more managerial responsibility. The Data Engineer Manager will play a pivotal role at the heart of our client's data & analytics operation. Having implemented a new MS Fabric based Data platform, the need now is to scale up and meet the demand to deliver data driven insights and strategies right across the business globally. There'll be a hands-on element to the role as you'll be troubleshooting, reviewing code, steering the team through deployments and acting as the escalation point for data engineering. Our client can offer an excellent career development opportunity and a vibrant, creative and collaborative work environment. This is a hybrid role based in Central / West London with the flexibility to work from home 2 or 3 days per week.

Key Responsibilities include;
Define and take ownership of the roadmap for the ongoing development and enhancement of the Data Platform.
Design, implement, and oversee scalable data pipelines and ETL/ELT processes within MS Fabric, leveraging expertise in Azure Data Factory, Databricks, and other Azure services.
Advocate for engineering best practices and ensure long-term sustainability of systems.
Integrate principles of data quality, observability, and governance throughout all processes.
Participate in recruiting, mentoring, and developing a high-performing data organization.
Demonstrate pragmatic leadership by aligning multiple product workstreams to achieve a unified, robust, and trustworthy data platform that supports production services such as dashboards, new product launches, analytics, and data science initiatives.
Develop and maintain comprehensive data models, data lakes, and data warehouses (e.g., utilizing Azure Synapse).
Collaborate with data analysts, Analytics Engineers, and various stakeholders to fulfil business requirements.
Key Experience, Skills and Knowledge:
Experience leading data or platform teams in a production environment as a Senior Data Engineer, Tech Lead, Data Engineering Manager etc.
Proven success with modern data infrastructure: distributed systems, batch and streaming pipelines
Hands-on knowledge of tools such as Apache Spark, Kafka, Databricks, DBT or similar
Experience building, defining, and owning data models, data lakes, and data warehouses
Programming proficiency in the likes of Python, Pyspark, SQL, Scala or Java.
Experience operating in a cloud-native environment such as Azure, AWS, GCP etc ( Fabric experience would be beneficial but is not essential).
Excellent stakeholder management and communication skills.
A strategic mindset, with a practical approach to delivery and prioritisation.
Proven success with modern data infrastructure: distributed systems, batch and streaming pipelines.
Experience building, defining, and owning data models, data lakes, and data warehouses.
Exposure to data science concepts and techniques is highly desirable.
Strong problem-solving skills and attention to detail.
Salary is dependent on experience and expected to be in the region of £85,000 - £95,000 + an attractive bonus scheme and benefits package.

For further information, please send your CV to Wayne Young at Young's Employment Services Ltd. YES are operating as both a recruitment Agency and Recruitment Business.
TPBN1_UKTJ

Related Jobs

View all jobs

Data Engineer Manager

Data Engineer Manager

Data Engineer Manager

Databricks Data Engineer -London Up to £100K

Snowflake and Matillion Data Engineer - Contract

CDI - Data Engineer (Data Science)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.