Data Engineer Manager

Canary Wharf
2 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer Manager

Data Engineering Manager

Senior Data Engineer

IT Project Manager

Senior Data Engineer

Senior Data Engineer

Data Engineer Manager

Perm

London

£75,000pa - £85,000pa

Role Summary

The Data Engineer Manager is responsible drive the design, development, and optimization of data solutions in the data infrastructure. In addition to fostering the growth of a skilled team, you will play a pivotal role in delivering the data applications, infrastructure, and services, ensuring they align with organizational goals and industry best practices.

As part of the Technology Hub the Data Engineer Manager will work very closely with all teams across the business. The role is instrumental in defining and upholding a clear vision for the integrity of data life cycle management aligning the strategic goal of becoming a centre of expertise. Additionally, it ensures stewardship of business data and technical architecture, fostering innovation and reliability across all data initiatives.

Key Responsibilities



Mentor the data engineering team to design and implement complex, tailored data solutions that support processing of high volumes of data across all schemes and applications.

*

Establish and support the technical vision and strategy for a robust data architecture that aligns with the overall strategy, with a strong focus on ensuring security for all structured data.

*

Establish and maintain robust operational support and monitoring systems to ensure the reliable performance of critical systems in live environments.

*

Facilitate the adoption and implementation of continuous delivery practices while advocating for the use of cloud solutions.

*

Design, implement, and optimize end-to-end data pipelines and solutions on Azure, ensuring data quality, reliability, and security throughout. Oversee the integration of both structured and unstructured data sources.

*

Oversee project timelines, scope, and deliverables to ensure successful execution, while actively monitoring progress and addressing risks proactively.

*

Implement best practices for process improvements, cost optimization and monitoring.

*

Continuously evaluate and improve the Azure data platform to enhance performance and scalability.

*

Collaborate with stakeholders to understand business requirements and translate them into technical solutions.

*

Develop and implement a comprehensive data governance framework to ensure data quality, security, and compliance across the data applications.

*

Design, evaluate impacts, perform technical design reviews, and approve technical designs as part of the design authority process.

*

Establish and maintain comprehensive documentation for all data engineering processes, pipelines, and systems.

*

Implement best practices for maintaining version control and traceability of documentation.

*

Foster continuous learning and adoption of the latest technologies while mentoring and training the data engineering team.

Key Requirements

Essential:

*

Minimum 6 years’ experience in Data Engineering, Data Architecture & Governance frameworks.

*

Minimum 4 years' experience with Python, preferably PySpark.

*

Experience leading small teams of Engineers.

*

Excellent communication and stakeholder management abilities.

*

Strong expertise in Azure: ADLS, Databricks, Stream Analytics, SQL DW, Synapse, Databricks, Azure Functions, Serverless Architecture, ARM T emplates, DevOps.

*

Hands-on experience with ETL/ELT processes and data warehousing.

*

Solid understanding of data security and compliance standards.

*

Experience with DevOps practices and tools (e.g., CI/CD pipelines, Azure DevOps).

*

The ability to simplify complex technical issues for a non-technical stakeholder audience.

*

Capable of understanding business needs and requirements while providing valuable, insightful recommendations.

*

Skilled in delivering presentations and technical reports clearly and persuasively

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.