National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineer II, Amazon

Amazon
London
4 days ago
Create job alert

Amazon’s Consumer Payments organization is seeking a highly quantitative, experienced Data Engineer to drive growth through analytics, automation of data pipelines, and enhancement of self-serve experiences. You will succeed in this role if you are an organized self-starter who can learn new technologies quickly and excel in a fast-paced environment. In this position, you will be a key contributor and sparring partner, developing analytics and insights that global executive management teams and business leaders will use to define global strategies and deep dive businesses.
You will be part the team that is focused on acquiring new merchants from around the world to payments around the world. The position is based in India but will interact with global leaders and teams in Europe, Japan, US, and other regions. You should be highly analytical, resourceful, customer focused, team oriented, and have an ability to work independently under time constraints to meet deadlines. You will be comfortable thinking big and diving deep. A proven track record in taking on end-to-end ownership and successfully delivering results in a fast-paced, dynamic business environment is strongly preferred.
Responsibilities include but not limited to:

  • Design, develop, implement, test, and operate large-scale, high-volume, high-performance data structures for analytics and Reporting.
  • Implement data structures using best practices in data modeling, ETL/ELT processes, and SQL, AWS – Redshift, and OLAP technologies, Model data and metadata for ad hoc and pre-built reporting.
  • Work with product tech teams and build robust and scalable data integration (ETL) pipelines using SQL, Python and Spark.
  • Continually improve ongoing reporting and analysis processes, automating or simplifying self-service support for customers.
  • Interface with business customers, gathering requirements and delivering complete reporting solutions.
  • Collaborate with Analysts, Business Intelligence Engineers and Product Managers to implement algorithms that exploit rich data sets for statistical analysis, and machine learning.
  • Participate in strategic & tactical planning discussions, including annual budget processes.
  • Communicate effectively with product/business/tech-teams/other Data teams.

    BASIC QUALIFICATIONS

    - 3+ years of data engineering experience
  • Experience with data modeling, warehousing and building ETL pipelines
    PREFERRED QUALIFICATIONS

    - Experience with AWS technologies like Redshift, S3, AWS Glue, EMR, Kinesis, FireHose, Lambda, and IAM roles and permissions
  • Experience with non-relational databases / data stores (object storage, document or key-value stores, graph databases, column-family databases)

    Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.
    Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status.

    #J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer-II, Fintech

Data Engineer II, SCOT - AIM

Data Engineer II

Data Engineer II, AWS Finance Technology

Data Engineer II, Davengers

Data Engineer II, Data Engineering - Case Management

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.

LinkedIn Profile Checklist for Data Science Jobs: 10 Tweaks to Elevate Recruiter Engagement

Data science recruiters often sift through dozens of profiles to find candidates skilled in Python, machine learning, statistical modelling and data visualisation—sometimes before roles even open. A generic LinkedIn profile won’t suffice in this data-driven era. This step-by-step LinkedIn for data science jobs checklist outlines ten targeted tweaks to elevate recruiter engagement. Whether you’re an aspiring junior data scientist, a specialist in MLOps, or a seasoned analytics leader, these optimisations will sharpen your profile’s search relevance and demonstrate your analytical impact.