Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Insight Global
City of London
1 week ago
Create job alert

Insight Global’s client is looking for a Senior Data Engineer to join their Finance and Operations team, responsible for designing and maintaining Azure-based data pipelines and APIs, building and optimizing ETL processes, managing large datasets, troubleshooting data issues, and documenting technical solutions. The ideal candidate will have strong coding skills in Python and SQL, experience with dbt, Azure DevOps, and CI/CD best practices, and a solid understanding of data warehousing principles. Success in this role requires excellent communication, a collaborative mindset, and proactive problem-solving to mitigate blockers and deliver scalable solutions. Candidates with experience in tools like Snowflake, Airflow, or Terraform, familiarity with infrastructure as code, and exposure to financial and operational data domains will stand out. This is a full-time onsite position in our London office, working closely with global teams to ensure data quality, automation, and continuous improvement.


Please note, this is a 6 month contract-to-hire position and would require you to be on-site 5 days a week out of the London office.


Day to Day:

  • Develop and maintain Azure-based data pipelines for Finance and Operations.
  • Build and optimize ETL workflows using SQL and dbt.
  • Write Python scripts for data transformation and automation.
  • Deploy infrastructure as code and manage cloud data solutions.
  • Collaborate with project managers and contractors across global teams.
  • Ensure data quality and compliance with best practices.
  • Troubleshoot and resolve data-related issues promptly.
  • Document technical solutions and maintain test scripts.


Must Haves:

  • Strong experience in data engineering.
  • Expertise in Azure (cloud platform)
  • SQL (advanced ETL and query optimization)
  • dbt (data transformation pipelines)
  • Python (data transformation and automation scripts)
  • Azure DevOps / GitHub (CI/CD pipelines, source control)
  • Data warehousing and ETL best practices


Plusses:

  • Experience with similar tools or technologies (e.g., Snowflake, Airflow, Terraform)
  • Familiarity with infrastructure as code
  • Ability to participate in architectural decisions
  • Strong problem-solving and continuous improvement mindset

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.