Data Engineer

Digital Waffle
Edinburgh
1 week ago
Create job alert

Data Engineer (Azure Data Factory)


Location: Fully Remote or Hybrid / Edinburgh

Salary: £38,000 - £44,000



An award-winning enterprise software scale-up with high ambitions for growth is on the lookout for another Data Engineer to join the team. They recently won the ScotlandIS Digital Tech Scale-up Business of the Year award and have also previously been recognised as Scotland’s fastest-growing tech company in the Deloitte Technology Fast 50 for three consecutive years.


What you’ll do:


  • Implement, test and deploy Azure Data Factory (ADF) pipeline definitions within version control to customer environments.
  • Work with our Site Reliability Engineering team to ensure your solutions are observable, reliable and performant.
  • Work with our software implementation consultants (SICs) to define and verify specification documents for ETL process.
  • Work with customer IT to test customer data source endpoints to ensure they meet specification.
  • Work with our Engineering teams to ensure end-to-end capability for integrated data.
  • Support cutover to production systems (can be outside normal working hours).
  • Identify improvements to existing Azure Data Factory processes to ensure they are more maintainable across a growing set of customers.



About you

  • You must have at least two years of experience in Azure Data Factory and be comfortable building transparent, easy-to-support pipelines.
  • Experience building and maintaining data integrations with a variety of external systems.
  • Good understanding of the ETL process.
  • Comfortable being in a client-facing role.
  • Excellent communication skills: you can clearly explain technical matters to any audience.
  • Confident working with complex referential data.
  • Knowledge of Rest APIs, SQL databases and other data sources.
  • A team player, with experience collaborating with other departments.
  • You demonstrate good attention to detail and enjoy breaking complex problems down into simple steps.



Applying for the opportunity



If you feel you have the required experience and would like to be considered for the opportunity, please forward an up-to-date version of your CV, and someone will contact you back within 48 hours if we feel you meet the requirements of the role.

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer - MS Azure

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.