Data Engineer

Charles Jenson Recruitment
London
3 weeks ago
Create job alert

We need a Data Engineer that is passionate about data and able to use various methods to transform raw data into useful data systems. The primary role of the Data Engineer is to combine expertise, programming skill, data science and business intelligence to extract meaningful insights from the data.

This is a great opportunity has arisen for a Data Engineer, to work within a fast-growing technology company.

The role is office based in London and can offer some Hybrid working for the right candidate.

Your skills and experience

Experience as a Data Engineer or in a similar role ( for example Analytics Engineer, Data Analyst or BI Developer).

Key skills:

  • Strong analytic skills related to working with structured and unstructured datasets.

  • Highly organised critical thinker with a great attention to detail.

  • Exceptional communication and presentation skills in order to explain your work to people who don't understand the technical details.

  • Effective listening skills in order to understand the requirements of the business.

  • Strong problem-solving with an emphasis on product development, with the ability to come up with imaginative solutions.

  • Drive and the resilience to try new ideas if the first one doesn't work-you'll be expected to work with minimal supervision, so it's important that you're able to motivate yourself.

  • Collaborative approach and a 'go-getting' attitude, sharing ideas and finding solutions.

  • Accountable for the outcome, seeks opportunities and removes obstacles.

  • Strong planning, timemanagement and organisational skills.

  • The ability to deliver under pressure and to tight deadlines.

  • A drive to learn and master new technologies and techniques.

    Experience in and knowledge of:

  • Data warehousing and working with and creating data architectures.

  • Building and optimizing 'bigdata’ data pipelines, architectures and datasets.

  • Manipulating, processing and extracting value from large, disconnected datasets.

  • SQL database design and working with relational databases, query authoring (SQL) as well as working familiarity with a variety of databases and other

  • Build processes supporting data transformation, data structures,metadata, dependency and workload management.

  • Data models, datamining, and segmentation techniques.

  • Using computer languages such as Python, Java and Scala, to manipulate data and draw insights from large data sets.

  • A variety of machine learning techniques (clustering, decision treelearning, artificialneural networks, etc.) and their real-world advantages/drawbacks.

    For more information, please contact Graham Feegan at Charles Jenson Recruitment

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.