Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Omaze
Edinburgh
1 month ago
Create job alert
THE POSITION

Our roster has an opening with your name on it


We are looking for a Data Engineer to join our growing data engineering team and help build the pipelines and infrastructure that power analytics, machine learning, and business decision‑making across the company. In this role, you’ll contribute to the design, development, and maintenance of reliable data systems while collaborating with stakeholders to support high‑impact data use cases.


The ideal candidate is a strong technical contributor who enjoys working with data at scale, solving practical problems, and continuously learning in a fast‑paced environment. If you’re excited by this challenge and want to work within a dynamic company, then we’d love to hear from you.


THE GAME PLAN

Everyone on our team has a part to play


Build & Maintain Data Pipelines

  • Design, build, and maintain scalable batch and streaming data pipelines to support analytics and business operations.
  • Write clean, efficient, and well‑documented code using tools like Python, SQL, and Spark.
  • Ensure data is reliable, accurate, and delivered in a timely manner.

Collaborate Across Teams

  • Work with data analysts, data scientists, and product managers to understand requirements and deliver actionable data solutions.
  • Translate business questions into engineering tasks and contribute to technical planning.
  • Participate in code reviews, sprint planning, and retrospectives as part of an agile team.

Data Quality & Operations

  • Monitor data pipelines and troubleshoot issues in a timely, systematic manner.
  • Implement data quality checks and contribute to observability and testing practices.
  • Document data sources, transformations, and architecture decisions to support long‑term maintainability.

THE STATS

What we’re looking for in our next teammate



  • Experience in data engineering, analytics engineering, or software engineering with a focus on data.
  • Strong SQL skills and familiarity with at least one programming language (e.g., Python, Java, or Scala).
  • Hands‑on experience with modern data tools such as Databricks, Airflow, DBT, Spark, or Kafka.
  • Understanding of data modeling concepts, data warehousing, and ETL/ELT best practices.
  • Experience working with cloud‑based data platforms (AWS, GCP, or Azure).

Preferred Qualifications

  • Experience supporting BI, analytics, or data science teams.
  • Familiarity with version control, CI/CD, and collaborative development workflows.
  • Exposure to data governance, privacy, or compliance practices.
  • Eagerness to learn new technologies and contribute to the growth of the team.

PLAYER BENEFITS

We treat our team right


From our many opportunities for professional development to our generous insurance and paid leave policies, we’re committed to making sure our employees get as much out of FanDuel as we ask them to give. Competitive compensation is just the beginning. As part of our team, you can expect:



  • An exciting and fun environment committed to driving real growth.
  • Opportunities to build really cool products that fans love.
  • Career and professional development resources to help you refine your game plan for owning and driving your career and development.
  • Be well, save well and live well – with FanDuel Total Rewards your benefits are one highlight reel after another.

ABOUT FANDUEL

FanDuel Group is the premier mobile gaming company in the United States and Canada. FanDuel Group consists of a portfolio of leading brands across mobile wagering including: America’s #1 Sportsbook, FanDuel Sportsbook; its leading iGaming platform, FanDuel Casino; the industry’s unquestioned leader in horse racing and advance‑deposit wagering, FanDuel Racing; and its daily fantasy sports product.


In addition, FanDuel Group operates FanDuel TV, its broadly distributed linear cable television network and FanDuel TV+, its leading direct‑to‑consumer OTT platform. FanDuel Group has a presence across all 50 states, Canada, and Puerto Rico.


The company is based in New York with US offices in Los Angeles, Atlanta, and Jersey City, as well as global offices in Canada and Scotland. The company’s affiliates have offices worldwide, including in Ireland, Portugal, Romania, and Australia.


FanDuel Group is a subsidiary of Flutter Entertainment, the world's largest sports betting and gaming operator with a portfolio of globally recognized brands and traded on the New York Stock Exchange (NYSE: FLUT).


Diversity, Equity and Inclusion

FanDuel is an equal opportunities employer. Diversity and inclusion in FanDuel means that we respect and value everyone as individuals. We don't tolerate bias, judgement or harassment. Our focus is on developing employees so that they reach their full potential.


FanDuel is committed to providing reasonable accommodations for qualified individuals with disabilities. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please email .


The requirements listed in our job descriptions are guidelines, not hard and fast rules. You don’t have to satisfy every requirement or meet every qualification listed. If your skills are transferable and you are in the ballpark experience‑wise, we'd love to speak to you!



#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.