Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Fresha
City of London
3 weeks ago
Create job alert

Fresha is the leading marketplace platform for beauty & wellness trusted by millions of consumers and businesses worldwide. Fresha is used by 130,000+ businesses and 450,000+ stylists and professionals worldwide, processing over 1 billion appointments to date.

The company is headquartered in London, United Kingdom, with 15 global offices located across North America, EMEA and APAC.

Fresha allows consumers to discover, book and pay for beauty and wellness appointments with local businesses via its marketplace, while beauty and wellness businesses and professionals use an all-in-one platform to manage their entire operations with an intuitive business software and financial technology solutions.

Fresha’s ecosystem gives merchants everything they need to run their business seamlessly by facilitating appointment bookings, point-of-sale, customer records management, marketing automation, loyalty, beauty products inventory and team management.

The consumer marketplace unlocks revenue potential for partner businesses by leveraging the power of online bookings and automated marketing through mobile apps and advanced integrations with major tech brands including Instagram, Facebook and Google

Role Overview

Given our exciting and progressive growth plans, we are looking for a skilled and experienced Senior Data Engineer to join our team. This role will report to the Head of Data & Infrastructure and play a key part in levelling up our infrastructure and data pipelines.

The ideal candidate will have a strong understanding of Kafka, Spark, Flink, and standard computer science concepts. They will also be a team player with excellent communication and problem-solving skills.

We seek someone comfortable working with highly available, always-on systems, applying changes in a backwards-compatible fashion, without downtimes, while guaranteeing consistency and reliability, always with the customer in mind.

This role is perfect for someone who thrives in a fast-paced environment, enjoys independent work, loves a challenge, and is eager to make a significant impact.

To foster a collaborative environment that thrives on face-to-face interactions and teamwork, all Fresha employees work from our dog-friendly office four days per week, with the flexibility to work remotely one day each week. London office: The Bower, 207, 211 Old St, London EC1V 9NR

Responsibilities:
  • Design, develop, and maintain data pipelines using Kafka and other tools
  • Build and maintain infrastructure using Terraform
  • Troubleshoot and resolve data engineering issues
  • Work with other teams to ensure that data is available and accessible
  • Stay up-to-date on the latest data engineering trends and technologies
  • Take part in decisions related to how we undertake new projects
  • Gather requirements and scope out projects with the rest of the team
Qualifications:
  • Bachelor's degree in Computer Science or a related field
  • 5+ years of experience as a Data Engineer
  • Strong understanding of Kafka, Spark, Flink, and standard computer science concepts
  • Experience with cloud-based infrastructure (AWS, Azure, GCP)
  • Excellent communication and problem-solving skills
  • Ability to work independently and as part of a team
Nice to Have:
  • Experience with relational databases (PostgreSQL)
  • Experience with Snowflake
  • Experience with Flink & Spark
  • Experience with NoSQL databases (Redis, ElasticSearch, etc.)
  • Experience with high availability systems and event-driven systems
Benefits:
  • Competitive salary and benefits package
  • Opportunity to work on cutting-edge technology
  • Chance to make a real impact on a growing company
  • Work with a team of talented and passionate engineers
Interview Process:
  • Informal meeting with Talent Partner (1 hour)
  • 1st Stage Interview with Head of Data & Infrastructure (30 minutes)
  • 2nd Stage Technical Google Hangout OR onsite with 2 members of the data Engineering team (Up to 2.5 hours)
  • Final Stage Google Hangout interview with CTO (1 hour)
Inclusive Workforce:

At Fresha, we are creating a culture where individuals of all backgrounds feel comfortable. We want all Fresha people to feel included and truly empowered to contribute fully to our vision and goals. Everyone who applies will receive fair consideration for employment.

We do not discriminate based on race, colour, religion, sex, sexual orientation, age, marital status, gender identity, national origin, disability, or any other applicable legally protected characteristics in the location in which the candidate is applying.

If you have any accessibility requirements that would make you more comfortable during the interview process and/or once you join, please let us know so that we can support you.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.