Data Engineer

HM Land Registry
Plymouth
1 day ago
Create job alert

This range is provided by HM Land Registry. Your actual pay will be based on your skills and experience — talk with your recruiter to learn more.


Base pay range

HM Land Registry (HMLR) is undertaking one of the largest transformation programmes in government, modernising the digital systems that support over £7 trillion of property ownership. As a Data Engineer, you will support the development of HMLR’s data engineering capability by helping to build and maintain reliable data pipelines and products. Your work will contribute to improving data access, quality and value across the organisation, supporting programmes that influence how HMLR manages and uses its data in the future. Salary up to £45,700, plus 29% employer pension contribution plus full Civil Service benefits. Flexible, hybrid working from Plymouth, Croydon or Coventry.


About the role

This role has come to fruition as HMLR embarks on a significant modernisation of its core services and data infrastructure. With new funding secured and a dedicated Data Engineering capability being formed for the first time, there is a crucial need to build strong, reliable data systems that can support future services and national programmes.


As a Data Engineer, you’ll work closely with senior data engineering colleagues and multidisciplinary teams to deliver robust data systems, complex data flows and data products for analytics and business intelligence. You’ll contribute to opportunity discovery, support the development of prototypes and production-ready solutions, and help address technical problems through research and experimentation. Alongside this, you’ll play an active role in improving data engineering processes and maintaining resilient, high-quality solutions in production.


If you would like to find out more about the role, the Data Engineering capability and what it’s like to work at HMLR, a Hiring Manager Q&A session where you can virtually 'meet the team' will be held via Teams on Tuesday, 6th of January at 12:30pm.


Please register your interest here:


Key Responsibilities

  • Support the design and maintenance of data flows that connect operational systems and provide data for analytics and BI.
  • Help re‑engineer manual processes into scalable, repeatable data pipelines and write optimised ETL code.
  • Contribute to building data streaming capabilities and creating accessible data products for analysis.
  • Improve data quality, document data mappings, and identify opportunities to optimise data engineering processes.
  • Work collaboratively with other teams, follow industry best practice aligned to HMLR standards, and participate in the data engineering community.
  • Develop understanding of legacy systems, learn the basics of Land Registry operations, and maintain awareness of organisational priorities.
  • Continue personal development to build skills and knowledge relevant to the role.
  • Experience of using a unified engine for large‑scale data analytics (e.g. Spark/PySpark).
  • Experience in writing, testing and implementing scripts (e.g. Python, Scala).
  • Experience of cloud data stack use (e.g. SageMaker Notebooks, S3, Glue, Athena).
  • Communicating technical concepts clearly to both technical and non‑technical stakeholders using appropriate language and methods.
  • Profiling data and analysing source systems to produce clear, actionable insights.
  • Knowledge of DevOps processes: (e.g. Terraform).
  • Knowledge of data pipeline testing (e.g. end‑to‑end testing, data quality testing, monitoring & alerting, unit & contract testing).
  • Knowledge of the data lifecycle (e.g. development, analysis, modelling (e.g. IDA Infosphere Data Architect), integration, metadata management).

Location

Expectation is to be working from any of the advertised locations 60% of your time across the month (typically three days per week). Hours are flexible and condensed hours are an option.


Dependent upon assessment at interview your starting salary will be one of the following:



  • Annual leave of 28.5 days per year plus 8 public holidays
  • A clear progression pathway including personalised training and development plans
  • Expensed accreditations with dedicated training days
  • Flexi‑time scheme (you decide what working hours work best for you)
  • Opportunity to work condensed hours
  • Social and sports clubs


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.