Data Engineer

JLA Group
Ripponden
1 week ago
Create job alert

About our business


JLA has been providing critical assets and services to a range of businesses and sectors including Care Homes, Hospitals, Schools, and Hotels for over 50 years. These assets and services are crucial in supporting customers with their Laundry, Catering, Heating, Fire Safety, Infection Control, and Air Conditioning.


The company offers a unique, all-inclusive package called Total Care, this rental model allows customers to make a single monthly payment, to receive brand new equipment, and have maintenance costs taken care of.


Role overview


The Data Engineer will work within the data team to assist in the design, implementation, and maintenance of our Azure-based data warehouses. The data engineer will be involved in all aspects of the data warehouse, covering integration to new data sources, design and creation of new data pipelines as well as the optimization and maintenance of existing ones. They will also support other areas of the business with their data needs as well as working closely with our engineering teams to deliver scalable, high-performance data solutions.



Key tasks


  • Azure Data Warehouse Development: Lead the design, development, and maintenance of enterprise-level data warehouses using Azure based data warehouse technologies such as Azure Data Factory, Analysis Services, SQL server and Azure Synapse.
  • Data Pipeline Creation: Build and optimize ETL/ELT data pipelines using Azure Data Factory, Databricks, or similar services to ensure data is properly ingested, transformed, and loaded into the data warehouse.
  • Data Integration: Integrate data from multiple sources including internal databases, third-party systems, and APIs into the Azure environment, ensuring data consistency and quality.
  • Optimization: Continuously monitor and optimize the performance of Azure-based data warehouses, ensuring the infrastructure is both cost-effective and scalable.
  • Collaboration: Work closely with data scientists, analysts, and other stakeholders to understand their data needs and ensure the availability of accurate, high-quality data.
  • Security & Compliance: Implement data security, privacy, and governance policies in accordance with best practices and regulatory requirements.
  • Automation: Develop scripts, automation workflows, and processes to streamline data ingestion, transformation, and loading activities.
  • Documentation: Maintain clear, detailed documentation of all data engineering processes, architectures, and workflows.


Criteria


  • Strong proficiency in SQL for data manipulation, querying, and optimization.
  • Experience with Azure Data Factory, Azure Databricks, Azure Synapse Analytics, and other Azure data services.
  • Familiarity with Azure Blob Storage, Azure Data Lake, and data lake architectures.
  • Experience working with data modelling, normalization, and star schema design for data warehouses.
  • Proficient in scripting languages such as Python, Shell, or PowerShell for automation tasks.
  • Knowledge of CI/CD practices and tools for data engineering pipelines.
  • Solid understanding of cloud-native data architectures and distributed systems.
  • Familiar with data science concepts and tools.


Experience


  • Minimum 5+ years of hands-on experience in data engineering or a related role, with a strong emphasis on Azure data platforms.
  • Proven experience in building, optimizing, and maintaining large-scale Azure-based data warehouses (e.g., Azure Synapse Analytics, Azure SQL Data Warehouse).
  • Proven experience in integrating and extracting data from external systems.



Personal qualities


  • Ability to troubleshoot and resolve performance bottlenecks within data pipelines and Azure-based solutions.
  • Experience in cost optimization strategies within Azure environments.
  • Excellent communication skills, with the ability to convey technical concepts to both technical and non-technical stakeholders.
  • Strong attention to detail, organization, and ability to manage multiple projects simultaneously.
  • Collaborative team player but with the ability to work alone on tasks.



Qualifications


  • Degree: BSc in Data Science, Computer Science, or a related field.
  • Certifications: Microsoft Certified: Azure Data Engineer Associate, or similar Azure-related certifications.
  • We will need you to have a full UK diving licence as the role involves UK travel.


When you join the JLA family, you'll also gain access to an extensive benefits package..


We care about our people and take your well-being seriously, which is why we offer a range of supportive tools for health and wellbeing, financial guidance, and legal advice. Our Employee Assistance Programme, 24/7 Wellness and Lifestyle App plus a dedicated team of Mental Health First Aiders are there to support you through life's challenges. We also offer up to 8 counseling sessions, which can be in-person or remote, providing you with the support and flexibility to suit your own personal needs. You can reach any fitness goals with our free onsite gym at head office along with a range of other gym membership discounts available.


To offer financial support, we not only provide life assurance coverage, company sick pay, and a company pension scheme, we offer a range of added benefits such as free office parking, eye care vouchers, a cycle-to-work scheme, and exclusive discounts through our staff benefits hub.

We really pride ourselves in offering a healthy work-life balance and believe it is important to have time away to recharge which is why we provide 25 days of annual leave plus bank holidays, flexible working options, and enhanced family leave policies.


We are a company that appreciates you and invests in your success and even have a Colleague Recognition Scheme to celebrate your achievements. We're dedicated to your growth, offering support in career development and training. We value your referrals, and through our Refer a Friend scheme.

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer - MS Azure

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.