Data Engineer

Hays Technology
Telford
3 weeks ago
Create job alert

About the Role

We're seeking an experienced Data Engineer to join a live services environment supporting critical data platforms and operational workloads. This is a hands-on role focused on troubleshooting, incident resolution, maintaining batch operations, and ensuring the smooth transition of new changes into production.You'll work closely with colleagues across Live Services and Project Teams, helping to maintain platform stability, resolve issues efficiently, and drive continuous improvement.

Key Responsibilities

Investigate and diagnose data-related issues across live environments
Support and contribute to timely incident resolution
Escalate issues in line with the agreed support model
Manage and monitor batch processes and operational data workloads
Collaborate with project teams to support seamless deployment and transition of changes into production
Identify, recommend, and implement service improvements where capacity allows
Work closely with live service team members to maintain high service standards
Essential Skills & Experience

Proven Data Engineering experience in operational or live service environments
Strong competency with ETL/ELT tools, such as:
Azure Data Factory
Informatica
SSIS
Airflow
Strong SQL proficiency
Experience using monitoring tools, including:
Application Insights
Splunk
Grafana
CloudWatch
Experience with scheduling systems such as Cron, Autosys, or Control-M
Understanding of batch vs streaming data workloads
Familiarity with cloud/data platforms: Azure, AWS, or GCP
Ability to work effectively within structured support models and cross-functional teams
Active SC Clearance (mandatory)

What you need to do now

If you're interested in this role, click 'apply now' to forward an up-to-date copy of your CV, or call us now.
If this job isn't quite right for you, but you are looking for a new position, please contact us for a confidential discussion about your career.

Hays Specialist Recruitment Limited acts as an employment agency for permanent recruitment and employment business for the supply of temporary workers. By applying for this job you accept the T&C's, Privacy Policy and Disclaimers which can be found at (url removed)

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.