Data Engineer

Wormholt and White City
3 weeks ago
Create job alert

Data Engineer - Hybrid - London / 2 or 3 days work from home
Circ £55,000 - £70,000 + Excellent Benefits Package
A fantastic opportunity is available for a Data Engineer that enjoys working in a fast paced and collaborative team playing work environment. Our client is a prestigious and successful ecommerce / wholesale business trading all over the globe. They've been expanding at a remarkable pace and as a consequence have transformed their technical landscape with leading edge solutions. Having implemented a new MS Fabric based Data platform, the need is now to scale up and deliver data driven insights and strategies right across the business globally. The Data Engineer will be joining a close knit friendly team that is the hub of our clients global data & analytics operation. The role would suit a mid-level data engineer, or a junior engineer with 2 years experience looking to take the next step up. Previous experience with MS Fabric would be beneficial but is by no means essential. Interested candidates must have experience in a similar role with MS Azure Data Platforms, Synapse, Databricks or other Cloud platforms such as AWS, GCP, Snowfake etc.
Key Responsibilities will include;

  • Design, implement, and optimize end-to-end solutions using Fabric components:
    • o Data Factory (pipelines, orchestration)
    • o Data Engineering (Lakehouse, notebooks, Apache Spark)
    • o Data Warehouse (SQL endpoints, schemas, MPP performance tuning)
    • o Real-Time Analytics (KQL databases, event ingestion)
    • o Manage and enhance OneLake architecture, delta lake tables, security policies, and data governance within Fabric.
    • o Build scalable, reusable data assets and engineering patterns that support analytics, reporting, and machine learning workloads.
  • Collaborate with data scientists, analysts, and other stakeholders to understand data requirements and deliver effective solutions.
  • Troubleshoot and resolve data-related issues in a timely manner.
    Key Experience, Skills and Knowledge:
  • Proven 2 yrs+ experience as a Data Engineer or similar role, with a strong focus on PySpark, SQL, Microsoft Azure Data platforms and Power BI an advantage
  • Proficiency in development languages suitable for intermediate-level data engineers, such as:
    • Python / PySpark: Widely used for data manipulation, analysis, and scripting.
    • SQL: Essential for querying and managing relational databases.
  • Understanding of D365 F&O Data Structures is highly desirable
  • Strong problem-solving skills and attention to detail.
  • Excellent communication and collaboration abilities.
    This is a hybrid role based in Central / West London with the flexibility to work from home 2 or 3 days per week. Salary will be dependent on experience and likely to be in the region of £55,000 - £70,000 + an attractive benefits package including bonus scheme.
    For further information, please send your CV to Wayne Young at Young's Employment Services Ltd. YES are operating as both a recruitment Agency and Recruitment Business

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.