Data Engineer

Chaucer
3 weeks ago
Create job alert

Are you a Senior Data Engineer with iGaming or Gambling experience, looking to build and scale modern data platforms?

BENEFITS: £80,000–£95,000 depending on experience, fully remote, excellent benefits package

You’ll be joining a fast-growing iGaming and online casino company operating a custom-built platform that supports millions of player interactions. The business is a recognised leader across sports betting and online casino, with a strong focus on performance, reliability and data-driven decision-making.

As a Senior Data Engineer, you’ll be responsible for designing, building and maintaining scalable data pipelines and infrastructure that underpin analytics, reporting and product insight across the organisation.

Core Responsibilities
Design, build and maintain robust data pipelines to support analytics, product and reporting needs
Develop and optimise ETL/ELT processes for large volumes of player, game and transaction data
Work closely with data analysts and stakeholders to ensure data is reliable, accessible and well-structured
Improve data quality, monitoring and observability across the platform
Support real-time and batch data processing use cases
Collaborate with engineering teams to integrate data solutions with the wider platform
Ensure data architecture aligns with security, compliance and regulatory requirements
Contribute to data platform strategy, tooling decisions and best practiceRequired Experience & Expertise
Proven experience as a Data Engineer, ideally within iGaming, gambling or another regulated environment
Strong experience with SQL and modern data warehousing solutions
Experience building pipelines using tools such as Airflow, dbt or similar
Solid understanding of cloud platforms, ideally AWS
Experience working with event-driven or streaming data architectures is a plus
Strong grasp of data modelling, performance optimisation and scalability
Comfortable collaborating with analytics, product and engineering teams

Eligo Recruitment is acting as an Employment Business in relation to this vacancy. Eligo is proud to be an equal opportunity employer dedicated to fostering diversity and creating an inclusive and equitable environment for employees and applicants. We actively celebrate and embrace differences, including but not limited to race, colour, religion, sex, sexual orientation, gender identity, national origin, veteran status, and disability. We encourage applications from individuals of all backgrounds and experiences and all will be considered for employment without discrimination. At Eligo Recruitment diversity, equity and inclusion is integral to achieving our mission to ensure every workplace reflects the richness of human diversity

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.