Data Engineer

Glasgow
3 weeks ago
Create job alert

Mid-Level Data Engineer (Azure / Databricks)

NO VISA REQUIREMENTS

Location: Glasgow (3+ days)
Reports to: Head of IT
My client is undergoing a major transformation of their entire data landscape-migrating from legacy systems and manual reporting into a modern Azure + Databricks Lakehouse. They are building a secure, automated, enterprise-grade platform powered by Lakeflow Declarative Pipelines, Unity Catalog and Azure Data Factory.
They are looking for a Mid-Level Data Engineer to help deliver high-quality pipelines and curated datasets used across Finance, Operations, Sales, Customer Care and Logistics.

What You'll Do

Lakehouse Engineering (Azure + Databricks)

Build and maintain scalable ELT pipelines using Lakeflow Declarative Pipelines, PySpark and Spark SQL.

Work within a Medallion architecture (Bronze ? Silver ? Gold) to deliver reliable, high-quality datasets.

Ingest data from multiple sources including ChargeBee, legacy operational files, SharePoint, SFTP, SQL, REST and GraphQL APIs using Azure Data Factory and metadata-driven patterns.

Apply data quality and validation rules using Lakeflow Declarative Pipelines expectations.

Curated Layers & Data Modelling

Develop clean and conforming Silver & Gold layers aligned to enterprise subject areas.

Contribute to dimensional modelling (star schemas), harmonisation logic, SCDs and business marts powering Power BI datasets.

Apply governance, lineage and permissioning through Unity Catalog.

Orchestration & Observability

Use Lakeflow Workflows and ADF to orchestrate and optimise ingestion, transformation and scheduled jobs.

Help implement monitoring, alerting, SLAs/SLIs and runbooks to support production reliability.

Assist in performance tuning and cost optimisation.

DevOps & Platform Engineering

Contribute to CI/CD pipelines in Azure DevOps to automate deployment of notebooks, Lakeflow Declarative Pipelines, SQL models and ADF assets.

Support secure deployment patterns using private endpoints, managed identities and Key Vault.

Participate in code reviews and help improve engineering practices.

Collaboration & Delivery

Work with BI and Analytics teams to deliver curated datasets that power dashboards across the business.

Contribute to architectural discussions and the ongoing data platform roadmap.

Tech You'll Use

Databricks: Lakeflow Declarative Pipelines, Lakeflow Workflows, Unity Catalog, Delta Lake

Azure: ADLS Gen2, Data Factory, Event Hubs (optional), Key Vault, private endpoints

Languages: PySpark, Spark SQL, Python, Git

DevOps: Azure DevOps Repos & Pipelines, CI/CD

Analytics: Power BI, Fabric

What We're Looking For

Experience

Commercial and proven data engineering experience.

Hands-on experience delivering solutions on Azure + Databricks.

Strong PySpark and Spark SQL skills within distributed compute environments.

Experience working in a Lakehouse/Medallion architecture with Delta Lake.

Understanding of dimensional modelling (Kimball), including SCD Type 1/2.

Exposure to operational concepts such as monitoring, retries, idempotency and backfills.

Mindset

Keen to grow within a modern Azure Data Platform environment.

Comfortable with Git, CI/CD and modern engineering workflows.

Able to communicate technical concepts clearly to non-technical stakeholders.

Quality-driven, collaborative and proactive.

Nice to Have

Databricks Certified Data Engineer Associate.

Experience with streaming ingestion (Auto Loader, event streams, watermarking).

Subscription/entitlement modelling (e.g., ChargeBee).

Unity Catalog advanced security (RLS, PII governance).

Terraform or Bicep for IaC.

Fabric Semantic Models or Direct Lake optimisation experience.

Why Join?

Opportunity to shape and build a modern enterprise Lakehouse platform.

Hands-on work with Azure, Databricks and leading-edge engineering practices.

Real progression opportunities within a growing data function.

Direct impact across multiple business domains

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.