Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Sheffield
19 hours ago
Create job alert

Data Engineer

Location: Sheffield (Hybrid - 3 days per week onsite)

Salary: £50,000-£60,000 depending on experience

DCS Tech are searching for an experienced Data Engineer to join our clients growing team! You will play a crucial part in designing, building, and optimising the data infrastructure that underpins the organisation.

Key responsibilities

Design, develop, and deploy scalable, secure, and reliable data pipelines using modern cloud and data engineering tools.
Consolidate data from internal systems, APIs, and third-party sources into a unified data warehouse or data lake environment.
Build and maintain robust data models to ensure accuracy, consistency, and accessibility across the organisation.
Work closely with Data Analysts, Data Scientists, and business stakeholders to translate data requirements into effective technical solutions.
Optimise data systems to deliver fast and accurate insights supporting dashboards, KPIs, and reporting frameworks.
Implement monitoring, validation, and quality checks to ensure high levels of data accuracy and trust.
Support compliance with relevant data standards and regulations, including GDPR.
Maintain strong data security practices relating to access, encryption, and storage.
Research and recommend new tools, technologies, and processes to improve performance, scalability, and efficiency.
Contribute to migrations and modernisation projects across cloud and data platforms (e.g. AWS, Azure, GCP, Snowflake, Databricks).
Create and maintain documentation aligned with internal processes and change management controls.

Experience & Technical Skills

Proven hands-on experience as a Data Engineer or in a similar data-centric role.
Strong proficiency in SQL and Python.
Solid understanding of ETL/ELT pipelines, data modelling, and data warehousing principles.
Experience working with cloud platforms such as AWS, Azure, or GCP.
Exposure to modern data tools such as Snowflake, Databricks, or BigQuery.
Familiarity with streaming technologies (e.g., Kafka, Spark Streaming, Flink) is an advantage.
Experience with orchestration and infrastructure tools such as Airflow, dbt, Prefect, CI/CD pipelines, and Terraform.

What you get in return:

Up to £60,000 per annum + benefits
Hybrid working (3 in office)
Opportunity to lead and mentor within a growing team!
Professional development and training support

This company is an equal opportunity employer and values diversity. We do not discriminate on the basis of race, religion, colour, national origin, gender, sexual orientation, age, marital status, veteran status, or disability status.

Interested?

Please submit your CV to Meg Kewley at DCS Recruitment via the link provided.

Alternatively, email me at or call (phone number removed).

DCS Recruitment and all associated companies are committed to creating a working environment where diversity is celebrated and everyone is treated fairly, regardless of gender, gender identity, disability, ethnic origin, religion or belief, sexual orientation, marital or transgender status, age, or nationality

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.