Data Engineer

Stepney
1 week ago
Create job alert

Junior to Mid-Level Data Engineer – Financial Services | Strong Kafka/Streaming Focus- London/Hybrid (2 days per week) – Up to £70K (DOE)

My client, an innovative and rapidly expanding Financial Services organisation, is seeking a Junior to Mid-Level Data Engineer to join their highly technical data team. This is a unique opportunity to be part of a forward thinking company where data is central to strategic decision-making.

I'm looking for someone who brings hands-on experience in streaming data architectures, particularly with Apache Kafka and Confluent Cloud, and is eager to shape the future of scalable, real-time data pipelines. You’ll work closely with both the core Data Engineering team and the Data Science function, bridging the gap between model development and production-grade data infrastructure.

What You’ll Do:

  • Design, build, and maintain real-time data streaming pipelines using Apache Kafka and Confluent Cloud.

  • Architect and implement robust, scalable data ingestion frameworks for batch and streaming use cases.

  • Collaborate with stakeholders to deliver high-quality, reliable datasets to live analytical platforms and machine learning environments.

  • Serve as a technical advisor on data infrastructure design across the business.

  • Proactively identify improvements and contribute to evolving best practices, with freedom to experiment and implement new technologies or architectures.

  • Act as a bridge between Data Engineering and Data Science, ensuring seamless integration between pipelines and model workflows.

  • Support data governance, quality, and observability efforts across the data estate.

    What I'm Looking For:

  • 2+ years of experience in a Data Engineering or related role.

  • Strong experience with streaming technologies such as Kafka, Kafka Streams, and/or Confluent Cloud (must-have).

  • Solid knowledge of Apache Spark and Databricks.

  • Proficiency in Python for data processing and automation.

  • Familiarity with NoSQL technologies (e.g., MongoDB, Cassandra, or DynamoDB).

  • Exposure to machine learning pipelines or close collaboration with Data Science teams is a plus.

  • A self-starter with strong analytical thinking and a “leave it better than you found it” attitude.

  • Ability to operate independently and also collaborate effectively across teams.

  • Strong communication skills and experience engaging with technical and non-technical stakeholders.

    Why Join?

  • Be part of a highly respected and technically advanced data team at the heart of a thriving business.

  • Get ownership of key architecture decisions and the freedom to try new ideas.

  • Play a pivotal role in scaling the company’s data capabilities during a phase of significant growth.

  • Influence data strategy across business units and leave a lasting impact

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer - Snowflake, Oracle - Redress and Remediation

Data Engineer - MS Azure

Principal Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.