Data Checking Administrator

Leeds
2 weeks ago
Create job alert

A leading Leeds-based tech organisation is looking for a candidate who is comfortable around data - checking large volumes of data, mapping data, and leading on suggesting process improvements. This role involves checking large volumes of data throughout your shift, ensuring that large data sets are correct. You must have experience of working with data.

Key Responsibilities:

Manage and analyse large volumes of data to ensure accuracy and functionality across various systems.
Monitor systems to ensure data is behaving as it should. If data isn't performing correctly, investigate and resolve the issue.
Map data, ensuring it's organised and flows correctly across different systems.
Constantly look for ways to improve data processes and identify areas for improvement.
Work with spreadsheets, ensuring data is well-managed and accurate.
Collaborate with your team to ensure smooth and efficient operations.
No direct customer contact, but a vital part of the team ensuring everything runs efficiently behind the scenes.

Shifts & Schedule:

5 shifts a week, including weekends.
3 shifts: 9am - 5pm.
2 late-night shifts per month: until 10pm.
Weekend shifts will start at 7am, 9am, or 1pm for 8-hour shifts.

Ideal Candidate:

Data Science Graduate or someone with experience in a data-related role.
Strong ability to manage large sets of data and work with spreadsheets (Excel, Google Sheets, etc.).
An analytical mindset with the ability to identify issues and solve problems when data isn't behaving as expected.
A keen eye for improvement opportunities within data processes.
Excellent attention to detail and strong organisational skills.Please apply today if you love data and would like to work for a forward thinking employer in Leeds.

Huntress Search Ltd acts as a Recruitment Agency in relation to all Permanent roles and as a Recruitment Business in relation to all Temporary roles.

We practice a diverse and inclusive recruitment process that ensures equal opportunity for all we work with, irrespective of race, sexual orientation, mental or physical disability, age or gender. As an organisation, we encourage applications from all backgrounds and will ensure measures are met when required, to allow a fair process throughout.

PLEASE NOTE: We can only consider applications from candidates who have the right to work in the UK

Related Jobs

View all jobs

Sales Administrator

Administrator - Barnsley

Quality Inspector

8299 - PMO Admin

Process Operative

Quantitative Researcher

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.