Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Data Architect (London)

ZipRecruiter
London
1 week ago
Applications closed

Related Jobs

View all jobs

Data Architect

Data Architect

Data Architect

Data Architect

Data Architect

Data Architect - NHS - Erwin - Remote - Inside IR35

Job Description

Job Title: Data Architect

Location: London - 3 days travel to office

SC Cleared: Required

Job Type: Full-Time

Experience: 10+ years

Job Summary :

We are seeking a highly experienced and visionary Data Architect to lead the design and implementation of the data architecture for our cutting-edge Azure Databricks platform focused on economic data. This platform is crucial for our Monetary Analysis, Forecasting, and Modelling efforts. The Data Architect will be responsible for defining the overall data strategy, data models, data governance framework, and data integration patterns. This role requires a deep understanding of data warehousing principles, big data technologies, cloud computing (specifically Azure), and a strong grasp of data analysis concepts within the economic domain.

Key Experience:

  • Extensive Data Architecture Knowledge: They possess a deep understanding of data architecture principles, including data modeling, data warehousing, data integration, and data governance.
  • Databricks Expertise: They have hands-on experience with the Databricks platform, including its various components such as Spark, Delta Lake, MLflow, and Databricks SQL. They are proficient in using Databricks for various data engineering and data science tasks.
  • Cloud Platform Proficiency: They are familiar with cloud platforms like AWS, Azure, or GCP, as Databricks operates within these environments. They understand cloud- data architectures and best practices.
  • Leadership and Communication Skills: They can lead technical teams, mentor junior architects, and effectively communicate complex technical concepts to both technical and non-technical stakeholders.

Responsibilities :

Data Strategy & Vision:

  • Develop and articulate the overall data strategy for the economic data platform, aligning it with business objectives and strategic themes.
  • Define the target data architecture and roadmap, considering scalability, performance, security, and cost-effectiveness.
  • Stay abreast of industry trends and emerging technologies in data management and analytics.

Data Modelling & Design:

  • Design and implement logical and physical data models that support the analytical and modelling requirements of the platform.
  • Define data dictionaries, data lineage, and metadata management processes.
  • Ensure data consistency, integrity, and quality across the platform.

Data Integration & Pipelines:

  • Define data integration patterns and establish robust data pipelines for ingesting, transforming, and loading data from diverse sources (e.g., APIs, databases, financial data providers).
  • Work closely with data engineers to implement and optimise data pipelines within the Azure Databricks environment.
  • Ensure data is readily available for modelling runtimes (Python, R, MATLAB).

Data Governance & Quality:

  • Establish and enforce data governance policies, standards, and procedures.
  • Define data quality metrics and implement data quality monitoring processes.
  • Ensure compliance with relevant data privacy regulations and security standards.

Technology Evaluation & Selection:

  • Evaluate and recommend appropriate data management technologies and tools for the platform.
  • Conduct proof-of-concepts and technical evaluations to validate technology choices.
  • Work with vendors and partners to ensure successful implementation of chosen technologies.

Collaboration & Communication:

  • Collaborate closely with data scientists, economists, business stakeholders, and other technical teams to understand their data needs and translate them into technical solutions.
  • Communicate data architecture concepts and designs effectively to both technical and non-technical audiences.
  • Mentor and guide other team members on data architecture best practices.

Data Security:

  • Work with security teams to ensure that data security policies and procedures are implemented and followed.
  • Define data access controls and ensure that sensitive data is protected.

Qualifications and Skills :

  • 10+ years of experience in data management, with at least 5+ years in a Data Architect role.
  • Deep understanding of data warehousing principles, data modelling techniques (e.g., dimensional modelling, data vault), and data integration patterns.
  • Extensive experience with big data technologies and cloud computing, specifically Azure (minimum 3+ years hands-on experience with Azure data services).
  • Strong experience with Azure Databricks, Delta Lake, and other relevant Azure services.
  • Active Azure Certifications: At least one of the following is required:
  • Microsoft Certified: Azure Data Engineer Associate
  • Microsoft Certified: Azure Data Scientist Associate
  • Active Databricks Certifications: At least one of the following is required:
  • Data Engineer Associate or Professional
  • ML Engineer Associate or Professional
  • Experience in designing and implementing data governance frameworks and data quality processes.
  • Experience working with large datasets and complex data landscapes.
  • Familiarity with economic data and financial markets is highly desirable.
  • Excellent communication, interpersonal, and presentation skills.
  • Strong analytical and problem-solving skills.
  • Experience with data visualisation tools (e.g., Tableau, Power BI).
  • Experience with metadata management tools e.g. Purview.
  • Knowledge of data science and machine learning concepts.
  • Experience with API design and development.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Pre-Employment Checks for Data Science Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in data science reflects the discipline's unique position at the intersection of statistical analysis, machine learning innovation, and strategic business intelligence. Data scientists often have privileged access to comprehensive datasets, proprietary algorithms, and business-critical insights that form the foundation of organisational strategy and competitive positioning. The data science industry operates within complex regulatory frameworks spanning GDPR, sector-specific data protection requirements, and emerging AI governance regulations. Data scientists must demonstrate not only technical competence in statistical modelling and machine learning but also deep understanding of research ethics, data privacy principles, and the societal implications of algorithmic decision-making. Modern data science roles frequently involve analysing personally identifiable information, financial data, healthcare records, and sensitive business intelligence across multiple jurisdictions and regulatory frameworks simultaneously. The combination of analytical privilege, predictive capabilities, and strategic influence makes thorough candidate verification essential for maintaining compliance, security, and public trust in data-driven insights and automated systems.

Why Now Is the Perfect Time to Launch Your Career in Data Science: The UK's Analytics Revolution

The United Kingdom stands at the forefront of a data science revolution that's reshaping how businesses make decisions, governments craft policies, and society tackles its greatest challenges. From the machine learning algorithms powering London's fintech innovation to the predictive models guiding Manchester's smart city initiatives, Britain's transformation into a data-driven economy has created an unprecedented demand for skilled data scientists that far outstrips the available talent. If you've been contemplating a career transition or seeking to position yourself at the cutting edge of the digital economy, data science represents one of the most intellectually stimulating, financially rewarding, and socially impactful career paths available today. The convergence of big data maturation, artificial intelligence mainstream adoption, business intelligence evolution, and cross-industry digital transformation has created the perfect conditions for data science career success.

Automate Your Data Science Jobs Search: Using ChatGPT, RSS & Alerts to Save Hours Each Week

Data science roles land daily across banks, product companies, consultancies, scaleups & the public sector—often buried in ATS portals or duplicated across boards. The fix: put discovery on rails with keyword-rich alerts, RSS feeds & a reusable ChatGPT workflow that triages listings, ranks fit, & tailors your CV in minutes. This copy-paste playbook is for www.datascience-jobs.co.uk readers. It’s UK-centric, practical, & designed to save you hours each week. What You’ll Have Working In 30 Minutes A role & keyword map spanning Core DS, Applied/Research, Product/Decision Science, NLP/CV, Causal/Experimentation, Time Series/Forecasting, MLOps-adjacent & Analytics Engineering overlaps. Shareable Boolean searches for Google & job boards that strip out noise. Always-on alerts & RSS feeds that bring fresh UK roles to you. A ChatGPT “Data Science Job Scout” prompt that deduplicates, scores match & outputs ready-to-paste actions. A simple pipeline tracker so deadlines & follow-ups never slip.