Data Architect

Apply Gateway
Marlow
1 month ago
Applications closed

Related Jobs

View all jobs

Data Architect

Data Architect & Data Lead

Data Architect - Contract

Databricks Architect

Databricks Architect

Data Architecture Lead

We are looking for a skilled Data Architect to join our team. This role involves designing and implementing data solutions on the cloud, including data lakes, warehouses, and pipelines. You’ll collaborate with teams to ensure data is accessible, optimized, and secure for analytics and business intelligence.

Key Responsibilities:

  • Architect scalable, secure cloud-based data systems using AWS services like Redshift, S3, Glue, and DynamoDB to support analytics and machine learning.
  • Develop and manage ETL/ELT workflows, transforming and processing data using AWS Glue, Apache Spark, and custom Python solutions.
  • Create and maintain relational and NoSQL data models to ensure efficient querying, storage, and reporting.
  • Integrate and consolidate data from diverse sources to ensure accuracy and consistency for analytics.
  • Implement data governance and security practices, including encryption, IAM roles, and compliance with GDPR and SOC 2.
  • Continuously optimize data systems for performance, cost efficiency, and scalability, ensuring high availability and reliability.
  • Partner with data engineers, data scientists, and business analysts to design solutions that meet business needs and enable data-driven decisions.
  • Maintain documentation on architecture, workflows, and best practices to ensure consistency and operational continuity.

Required Skills & Experience:

  • Extensive experience with AWS services like Redshift, S3, Glue, RDS, and DynamoDB for building data architectures.
  • Strong background in designing and automating ETL/ELT pipelines using AWS Glue, Spark, and Python.
  • Expertise in data modeling, structuring relational and NoSQL data for optimal performance.
  • Familiarity with data governance, encryption, IAM, and regulatory compliance (e.g., GDPR, SOC 2).
  • Experience with frameworks like Hadoop, Spark, or Kafka for processing large datasets.
  • Proficiency in Python, SQL, and Java for developing custom data workflows and querying large datasets.
  • Knowledge of infrastructure management tools such as CloudFormation, Terraform, or AWS CDK.
  • Ability to work across teams (data engineers, analysts, business stakeholders) to deliver data solutions that meet business needs.

Preferred Qualifications:

  • AWS Certified Solutions Architect – Associate, AWS Certified Big Data – Specialty, or similar certifications.
  • Experience with AWS Kinesis, Kafka, or other real-time data streaming technologies.
  • Familiarity with tools like Apache Atlas or AWS Glue Data Catalog.
  • Experience integrating data systems with machine learning workflows.
  • Experience with services like Amazon EMR, Redshift Spectrum, and AWS Data Pipeline.

If you’re an experienced Data Architect with a strong background in AWS and data solutions, we’d love to hear from you!

#CBTR

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.