Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Architect

ZipRecruiter
London
2 months ago
Create job alert

Job Description

Job Title: Data Architect

Location: London - 3 days travel to office

SC Cleared: Required

Job Type: Full-Time

Experience: 10+ years

Job Summary:

We are seeking a highly experienced and visionary Data Architect to lead the design and implementation of the data architecture for our cutting-edge Azure Databricks platform focused on economic data. This platform is crucial for our Monetary Analysis, Forecasting, and Modelling efforts. The Data Architect will be responsible for defining the overall data strategy, data models, data governance framework, and data integration patterns. This role requires a deep understanding of data warehousing principles, big data technologies, cloud computing (specifically Azure), and a strong grasp of data analysis concepts within the economic domain.

Key Experience:

  • Extensive Data Architecture Knowledge: They possess a deep understanding of data architecture principles, including data modeling, data warehousing, data integration, and data governance.
  • Databricks Expertise: They have hands-on experience with the Databricks platform, including its various components such as Spark, Delta Lake, MLflow, and Databricks SQL. They are proficient in using Databricks for various data engineering and data science tasks.
  • Cloud Platform Proficiency: They are familiar with cloud platforms like AWS, Azure, or GCP, as Databricks operates within these environments. They understand cloud- data architectures and best practices.
  • Leadership and Communication Skills: They can lead technical teams, mentor junior architects, and effectively communicate complex technical concepts to both technical and non-technical stakeholders.

Responsibilities:

Data Strategy & Vision:

  • Develop and articulate the overall data strategy for the economic data platform, aligning it with business objectives and strategic themes.
  • Define the target data architecture and roadmap, considering scalability, performance, security, and cost-effectiveness.
  • Stay abreast of industry trends and emerging technologies in data management and analytics.

Data Modelling & Design:

  • Design and implement logical and physical data models that support the analytical and modelling requirements of the platform.
  • Define data dictionaries, data lineage, and metadata management processes.
  • Ensure data consistency, integrity, and quality across the platform.

Data Integration & Pipelines:

  • Define data integration patterns and establish robust data pipelines for ingesting, transforming, and loading data from diverse sources (e.g., APIs, databases, financial data providers).
  • Work closely with data engineers to implement and optimise data pipelines within the Azure Databricks environment.
  • Ensure data is readily available for modelling runtimes (Python, R, MATLAB).

Data Governance & Quality:

  • Establish and enforce data governance policies, standards, and procedures.
  • Define data quality metrics and implement data quality monitoring processes.
  • Ensure compliance with relevant data privacy regulations and security standards.

Technology Evaluation & Selection:

  • Evaluate and recommend appropriate data management technologies and tools for the platform.
  • Conduct proof-of-concepts and technical evaluations to validate technology choices.
  • Work with vendors and partners to ensure successful implementation of chosen technologies.

Collaboration & Communication:

  • Collaborate closely with data scientists, economists, business stakeholders, and other technical teams to understand their data needs and translate them into technical solutions.
  • Communicate data architecture concepts and designs effectively to both technical and non-technical audiences.
  • Mentor and guide other team members on data architecture best practices.

Data Security:

  • Work with security teams to ensure that data security policies and procedures are implemented and followed.
  • Define data access controls and ensure that sensitive data is protected.

Qualifications and Skills:

  • 10+ years of experience in data management, with at least 5+ years in a Data Architect role.
  • Deep understanding of data warehousing principles, data modelling techniques (e.g., dimensional modelling, data vault), and data integration patterns.
  • Extensive experience with big data technologies and cloud computing, specifically Azure (minimum 3+ years hands-on experience with Azure data services).
  • Strong experience with Azure Databricks, Delta Lake, and other relevant Azure services.
  • Active Azure Certifications: At least one of the following is required:
  • Microsoft Certified: Azure Data Engineer Associate
  • Microsoft Certified: Azure Data Scientist Associate
  • Active Databricks Certifications: At least one of the following is required:
  • Data Engineer Associate or Professional
  • ML Engineer Associate or Professional
  • Experience in designing and implementing data governance frameworks and data quality processes.
  • Experience working with large datasets and complex data landscapes.
  • Familiarity with economic data and financial markets is highly desirable.
  • Excellent communication, interpersonal, and presentation skills.
  • Strong analytical and problem-solving skills.
  • Experience with data visualisation tools (e.g., Tableau, Power BI).
  • Experience with metadata management tools e.g. Purview.
  • Knowledge of data science and machine learning concepts.
  • Experience with API design and development.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Architect

Data Architect

Data Architect

Data Architect

Data Architect

Data Architect - Inside IR35 6 month contract

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Data Science Skills in 2025/26

Data science continues to be one of the most exciting, high-growth career paths in the UK and worldwide. From predicting customer behaviour to detecting fraud and driving healthcare innovations, data scientists are at the forefront of digital transformation. But breaking into the field isn’t just about having a degree. Employers are looking for candidates who can demonstrate practical data science skills — analysing datasets, building machine learning models, and presenting insights that solve real business problems. The best part? You don’t need to spend thousands on premium courses or expensive software. There are dozens of high-quality, free tools and platforms that allow you to practise data science in 2025. This guide explores the best ones to help you learn, experiment, and build portfolio-ready projects.

Top 10 Skills in Data Science According to LinkedIn & Indeed Job Postings

Data science isn’t just a buzzword — it’s the engine powering innovation in sectors across the UK, from finance and healthcare to retail and public policy. As organisations strive to turn data into insight and action, the need for well-rounded data scientists is surging. But what precise skills are employers demanding right now? Drawing on trends seen in LinkedIn and Indeed job ads, this article reveals the Top 10 data science skills sought by UK employers in 2025. You’ll get guidance on showcasing these in your CV, acing interviews, and building proof of your capabilities.

The Future of Data Science Jobs: Careers That Don’t Exist Yet

Data science has rapidly evolved into one of the most important disciplines of the 21st century. Once a niche field combining elements of statistics and computer science, it is now at the heart of decision-making across industries. Businesses, governments, and charities rely on data scientists to uncover insights, forecast trends, and build predictive models that shape strategy. In the UK, data science has become central to economic growth. From the NHS using data to improve patient outcomes to financial institutions modelling risk, the applications are endless. The UK’s thriving tech hubs in London, Cambridge, and Manchester are creating high demand for data talent, with salaries often outpacing other technology roles. Yet despite its current importance, data science is still in its infancy. Advances in artificial intelligence, quantum computing, automation, and ethics will transform what data scientists do. Many of the most vital data science jobs of the next two decades don’t exist yet. This article explores why new careers are emerging, the roles likely to appear, how current jobs will evolve, why the UK is well positioned, and how professionals can prepare now.