Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Analyst -Teradata

Glasgow
6 days ago
Create job alert

Contract Opportunity: Data Analyst & Modeller - Teradata Platform

Banking | Glasgow | Hybrid

This role is for a Data Analyst & Modeller supporting a major data transformation programme for a financial services client. The successful candidate will play a key role in analysing existing data processes, tracing data lineage, and building models that support business and technical needs.

Role details

Title: Data Analyst & Modeller

Location: Glasgow (2-3 days on-site per week)

Contract: Initial 12-month contract

Requirements:

Strong experience with Teradata SQL and BTEQ scripting
Proven ability to perform data lineage and mapping
Background in financial services or regulated industries Focus of the role:

This role will support discovery and analysis activities across the clients data landscape. The successful candidate will interrogate data using Teradata tools, collaborate with stakeholders to define data requirements, and document data flows and models with clarity and precision.

This is a great opportunity to contribute to a long-term transformation programme in a high-impact environment.

Please click to find out more about our Key Information Documents. Please note that the documents provided contain generic information. If we are successful in finding you an assignment, you will receive a Key Information Document which will be specific to the vendor set-up you have chosen and your placement.

To find out more about Huxley, please visit

Huxley, a trading division of SThree Partnership LLP is acting as an Employment Business in relation to this vacancy | Registered office | 8 Bishopsgate, London, EC2N 4BQ, United Kingdom | Partnership Number | OC(phone number removed) England and Wales

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.