Data Analyst - Fintech SaaS Game Changer. Hybrid

RecruitmentRevolution.com
Epsom
2 days ago
Create job alert

This isn’t a back-office data role.

You’re not buried in IT, and you’re not just building dashboards for someone else to interpret.

You’re the data expert who sits alongside the sales team, fixes the spreadsheets everyone else avoids, turns messy data into insight, and helps customers get live and confident with the platform. Half your day is deep in numbers and automation. The other half is working directly with people - onboarding, training, and enabling real-world outcomes.

If you’re a hands-on Data Analyst who enjoys ownership, visibility, and influence - and you want your work to directly impact growth - this role is built for you.

The Role at a Glance:
Data Analyst
Epsom, Surrey HQ Based 3 days / 2 days per week working from home
£30,000 - £40,000 DOE
Plus Benefits and potential progression to Head of Customer Success
Full time, Permanent - Monday - Friday - 8:30am - 5:30pm

Awards: British Credit Awards 2025 Finalist for Innovation in Credit. Fintech Winners at the CICM British Credit Awards 2023, Credit & Collections FinTech Supplier Award 2023
Clients: Verizon, Informa plc, Zoopla, Rentokil, Haymarket, SSE, Zendesk, Johnson Controls, ADT and More…
Culture: Informality and Flexibility, Work-Life Balance, Wellbeing, Personal Growth and Trust

Your Skills: Data Analyst. Python. SQL. An expert with Excel. Customer Service.

Who we are:

We power a ...

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.