Data Analyst - Financial Crime

Capgemini
Glasgow
1 week ago
Create job alert

Job Title:Data Analyst Financial Crime


Get The Future You Want!

Choosing Capgemini means choosing a company where you will be empowered to shape your career in the way you’d like, where you’ll be supported and inspired by a collaborative community of colleagues around the world, and where you’ll be able to reimagine what’s possible. Join us and help the world’s leading organizations unlock the value of technology and build a more sustainable, more inclusive world.


Your Role:

The Data Analyst - Financial Crime will be responsible for analyzing complex data sets to identify patterns, trends, and anomalies related to financial crime. This role involves collaborating with cross-functional teams to develop and implement data-driven strategies for detecting and preventing financial fraud and other illicit activities.


  • Data Analysis:Analyze transactions, accounts, customer data, and alerts to identify suspicious patterns and potential risks.
  • Model Development:Design and implement financial crime detection models and scenarios using statistical and analytical tools.
  • Reporting: Generate detailed reports and visualizations to communicate findings to stakeholders and support decision-making processes.
  • Root Cause Analysis:Conduct root cause analyses on financial crime incidents to enhance detection and prevention strategies.
  • Collaboration: Work closely with investigators, compliance teams, and other departments to translate data-driven insights into actionable recommendations.
  • Data Management:Ensure the accuracy, integrity, and security of data used for analysis and reporting.


Your Profile

  • Bachelor's degree in Data Analytics, Statistics, Finance, or a related field.
  • Advanced degree preferred.
  • Proven experience in the financial crimes/AML space, with a minimum of 3-5 years in data analysis roles.
  • Proficiency in data analytics tools such as SQL, Python, R, and SAS.
  • Experience with data visualization tools like Tableau.
  • Strong understanding of AML/KYC regulations and practices.
  • Excellent analytical and problem-solving skills, with the ability to interpret complex data sets.
  • Strong communication skills, with the ability to translate complex data into actionable insights.
  • Experience working in a major financial institution or consulting firm.
  • Certification in financial crime prevention or related areas.


About Capgemini

Capgemini is a global business and technology transformation partner, helping organizations to accelerate their dual transition to a digital and sustainable world while creating tangible impact for enterprises and society. It is a responsible and diverse group of 350,000 team members in more than 50 countries. With its strong over 55-year heritage, Capgemini is trusted by its clients to unlock the value of technology to address the entire breadth of their business needs. It delivers end-to-end services and solutions leveraging strengths from strategy and design to engineering, all fueled by its market-leading capabilities in AI, cloud, and data, combined with its deep industry expertise and partner ecosystem. The Group reported 2023 global revenues of €22.5 billion.


Get The Future You Want |www.capgemini.com

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst - 3 MONTHS

Data Analyst - Utilities

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.

Data Science Jobs in the Public Sector: Exploring Opportunities Across GDS, NHS, MOD, and More

Data science has emerged as one of the most influential fields in the 21st century, transforming how organisations make decisions, improve services, and solve complex problems. Nowhere is this impact more visible than in the UK public sector. From the Government Digital Service (GDS) to the National Health Service (NHS) and the Ministry of Defence (MOD), government departments and agencies handle vast amounts of data daily to support the well-being and security of citizens. For data enthusiasts looking to make a meaningful contribution, data science jobs in the public sector can offer rewarding roles that blend innovation, large-scale impact, and societal benefit. In this comprehensive guide, we’ll explore why data science is so pivotal to government, the roles you might find, the skills needed, salary expectations, and tips on how to succeed in a public sector data science career.

Contract vs Permanent Data Science Jobs: Which Pays Better in 2025?

Data science sits at the intersection of statistics, machine learning, and domain expertise, driving crucial business decisions in almost every sector. As UK organisations leverage AI for predictive analytics, customer insights, and automation, data scientists have become some of the most in-demand professionals in the tech job market. By 2025, data scientists with expertise in deep learning, natural language processing (NLP), and MLOps are commanding top-tier compensation packages. However, deciding whether to become a day‑rate contractor, a fixed-term contract (FTC) employee, or a permanent member of an organisation can be challenging. Each path offers a unique blend of earning potential, career progression, and work–life balance. This guide will walk you through the UK data science job market in 2025, examine the differences between these three employment models, present sample take‑home pay scenarios, and offer strategic considerations to help you determine the best fit for your career.