Data Analyst

Relay Technologies
City of London
1 day ago
Create job alert

Relay is fundamentally reshaping how goods move in an online era. Backed by Europe’s largest-ever logistics Series A ($35M), led by deep-tech investors Plural (whose portfolio spans fusion energy and space exploration), Relay is scaling faster than 99.98% of venture-backed startups. We're assembling the most talent-dense team the logistics industry has ever seen


Relay’s Mission is to free commerce from friction. Today, high delivery costs act as a hidden tax on e-commerce, quietly shaping what can be sold online and limiting who can participate. We envision a world where more goods move more freely between more people, making the online shopping experience seamless and accessible to everyone.


THE TEAM

  • ~90 people, more than half in engineering, product and data
  • 45+ advanced degrees across computer science, mathematics and operations research
  • Thousands of data points captured, calculated, analysed and predicted for every single parcel we handle
  • An intellectually vibrant culture of first‑principles thinking, tight feedback loops and relentless experimentation

Work Alongside Industry Leaders

Andy Turner – Director of Data


Andy Turner has built and led data teams across global enterprises and high growth scale ups on five continents. He has delivered cloud native platforms, launched AI products end to end, and holds patents for novel machine learning applications in the UK Capital Markets. Trained in statistics at Oxford, he pairs strong technical fundamentals with clear judgement, a commercial focus, and a bias to deliver.


Tech Stack Highlights

  • Cloud-native on GCP with extensive use of BigQuery and Cloud Run
  • Extensive use of ML modelling and LLM inference - no gimmicks here, this is our daily routine
  • Python, Rust and TypeScript - we keep things simple but use the right tool for the job
  • Cross-platform Flutter apps with a deep focus on user experience
  • Emerging tech integrations, including robotics and IoT-powered operations

The Opportunity

As a highly operational business, we rely on data to guide everything we do. We are a small but impactful data team that works on everything from operations research to optimise thousands of parcel deliveries daily, to detailed business metrics that drive our expansion and investment decisions, and everything in between.


We are looking for a Data Analyst to work on Last Mile Marketplace. This role is an opportunity to apply your analytical skills directly to the design and performance of critical logistics infrastructure as we scale.


You’ll work closely with squads across routing, sortation, first mile, middle mile, last mile, marketplace, and our commercial functions, and collaborate with operations, product, and engineering to identify problems, shape hypotheses, and deliver insight.


You’ll be an embedded contributor within key cross-functional squads, with strong exposure to real-world operations and the opportunity to drive meaningful change through data.


Last Mile Marketplace

  • Matching & Route Discoverability: Understand and optimise how couriers discover and book routes. Analyse booking data to identify what characteristics drive selection; use simulations and experiments to refine how, when, and to whom routes are shown, improving match quality and overall booking efficiency across the network.
  • Product Analytics: Analyse how couriers interact with our Last Mile app across booking funnels and core features. Run experiments to evaluate the impact of visibility, functionality, and interface changes on courier conversion, route uptake, and operational performance. Use this to shape product decisions and drive continuous improvement in courier experience.

Who Will Thrive in this role?

  • Define key performance indicators and build dashboards that make operational performance transparent and actionable
  • Support analysis of operational performance and help identify levers for improvement
  • Translate business problems into analytical questions – and analytical results into clear, actionable recommendations
  • Collaborate with data scientists, engineers, and operators to build data tools and surface performance insights
  • Contribute to scoped data projects from definition to delivery, with support from an experienced team of data professionals
  • 3+ years of experience as a data analyst or in a similar role
  • Strong SQL skills and experience with BI/data visualisation tools
  • Well-developed analytical and problem-solving skills, with a proven ability to derive insight from complex data
  • Effective communication skills – you can clearly explain analytical findings to both technical and non-technical audiences
  • A commercial mindset – you care about impact, not just insight

Fast and Focused Hiring Process

  1. Talent Acquisition Interview - 30mins | Online
  2. Hiring Manager Interview - 45mins
  3. SQL Live Coding - 60mins
  4. Case Study - 60mins
  5. Relay Operating Principles & Impact- 60mins
  6. Decision and offer within 48 hours. Our process mirrors our pace of work.

Who Thrives at Relay?

  • Aim with Precision: You define problems clearly and measure your impact meticulously.
  • Play to Win: You chase bold bets, tackle the hard stuff, and view constraints as fuel, not friction.
  • 1% Better Every Day: You believe that small, consistent improvements lead to exponential growth. You move quickly, deliver results, and learn from every experience.
  • All In, All the Time: You show up and step up. You take ownership from start to finish and do what it takes to deliver when it counts.
  • People-Powered Greatness: You invest in your teammates. You give and receive feedback with care and candour. You build trust through high standards and shared success.
  • Grow the Whole Pie: You seek out win‑win solutions for merchants, couriers, and our customers, because when they thrive, so do we.

Compensation, Benefits & Workplace

  • Generous equity, richer than 99% of European startups, with annual top-ups to share Relay’s success.
  • Private health & dental coverage, so comprehensive you’d need to be a partner at a Magic Circle law firm to match it.
  • 25 days of holidays
  • Enhanced parental leave.
  • Hardware of your choice.
  • Extensive perks (gym subsidies, cycle-to-work, Friday office lunch, covered Uber home and dinner for late nights, and more).
  • Located in Shoreditch, our office set-up enables the kind of in‑person interactions that drive impact. We work 4 days on‑site, with 1 day remote.

Relay is an equal‑opportunity employer committed to diversity, inclusion, and fostering a workplace where everyone thrives.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.