Data Analyst

Duxford
3 days ago
Create job alert

Permanent | Product & Technology | UK-based
Salary: £30,000 – £45,000 + bonus & benefits
I’m currently recruiting for a Data Analyst to join a growing fintech organisation within their Product & Technology team. This is a great opportunity for someone early in their data career who wants exposure to a broad range of business areas and the chance to develop in a fast-paced, data-driven environment.
The Role Reporting to a Senior Data Analyst, you’ll support business-wide reporting and analytics, helping turn raw data into accurate, meaningful insights that inform decision-making across compliance, finance, commercial, product, and leadership teams.
Key Responsibilities
Support the delivery of reporting and analytics across the business
Assist with analytics projects and respond to internal reporting requests
Clean, transform, and analyse data to produce clear business insights
Ensure reporting outputs are accurate, consistent, and well documented
Communicate analytical findings to technical and non-technical stakeholders
Support CRM reporting and data needs across commercial and operational teamsRequired Experience & Skills
1–3 years’ experience in a data analysis, reporting, or analytics role
Strong SQL skills with experience writing queries
Experience with data cleansing, visualisation, and trend analysis
Strong communication skills and attention to detail
Ability to manage internal stakeholder expectations
A curious, adaptable mindset and eagerness to learnNice to Have
Experience in fintech, payments, or financial services
Exposure to cloud data warehouses (e.g. Snowflake)
Experience with BI tools such as Tableau or Amazon QuickSight
Exposure to AI or machine learning techniquesWhat’s on Offer
Competitive salary (£30,000–£45,000 depending on experience)
Bonus scheme and pension
Private health insurance and healthcare cash plan
Life assurance and income protection
25 days’ annual leave plus public holidays and a birthday day offIf you’re looking to develop your data career within a collaborative, innovative fintech environment, I’d love to hear from you.
📩 Apply now or get in touch for more information

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.