Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Analyst

Edinburgh
1 day ago
Create job alert

AMS is a global workforce solutions partner committed to creating inclusive, dynamic, and future-ready workplaces. We help organisations adapt, grow, and thrive in an ever-evolving world by building, shaping, and optimising diverse talent strategies.

Our Contingent Workforce Solutions (CWS) is one of our service offerings. Acting as an extension of their recruitment teams, we connect them with skilled interim and temporary professionals, fostering workplaces where everyone can contribute and succeed.

Our client, a major UK retail bank, provides every day banking services to over 17 million retail customers. The banks expertise and services span across Business Services, Corporate banking, Wealth Management, Group Functions, Retail and Investment Banking.

On behalf of this organisation, AMS are looking for a Data Analyst for a 6 month contract based in Edinburgh with remote working available.

Purpose of the role:
We are seeking a Data Analyst to join our team and play a key role in driving a data led approach to decision making. You will combine strong analytical skills with technical expertise to deliver insights, support stakeholders, and ensure data quality across platforms.

What you'll do:

Apply critical thinking and problem solving abilities to support data driven strategies and business decisions.
Collaborate with stakeholders to gather requirements, translate business needs into analytical solutions, and present findings clearly.
Work closely with wider analytics teams to ensure a strong understanding of data usage, dependencies, and governance.
Develop and maintain SQL queries and scripts to extract, transform, and analyze data, primarily using Snowflake, AWS, and GitLab.
Support QA processes, ensuring accuracy, consistency, and reliability of data outputs.
Maintain project documentation and version control to ensure transparency and reproducibility of work.
Contribute to continuous improvement of data processes, tools, and reporting frameworks.The skills you'll need:

Proven experience as a Data Analyst or in a similar analytical role.
Strong critical thinking and problem solving skills with a data driven mindset.
Excellent stakeholder management skills, with the ability to communicate complex insights to non‑technical audiences.
Proficiency in SQL and experience with Snowflake, AWS, and GitLab.
Solid understanding of data usage, dependencies, and collaboration with analytics teams.
Experience with QA, project management practices, and version control documentation.
Strong attention to detail and commitment to data accuracy.Next steps

This client will only accept workers operating via an Umbrella or PAYE engagement model.

If you are interested in applying for this position and meet the criteria outlined above, please click the link to apply and we will contact you with an update in due course.

AMS, a Recruitment Process Outsourcing Company, may in the delivery of some of its services be deemed to operate as an Employment Agency or an Employment Business

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.