Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Analyst

Stamford
7 months ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst
Permanent | Monday-Friday, 9 AM - 5 PM | Office based in PE9 | Salary depends on experience

Please note: This is a fully office-based role.

Our client, a leading provider of industrial automation solutions, is looking for an experienced Data Analyst who excels at transforming data into actionable insights.

In this role, you will support strategic decision-making and enhance operational efficiency by leveraging data-driven analysis.

Key Responsibilities

Data Analysis - Gather, analyse, and interpret data to generate reports and dashboards, ensuring accuracy to support informed decision-making.
Business Strategy - Work closely with teams to identify challenges, develop data-driven solutions, and drive process improvements.
Data Management - Maintain and optimise data systems, ensure compliance with governance standards, and support data integration projects.
Collaboration - Communicate with key departments to align data initiatives with business objectives and improve overall efficiency.Click and Apply Now!

Adecco acts as an employment agency for permanent recruitment and an employment business for the supply of temporary workers. The Adecco Group UK & Ireland is an Equal Opportunities Employer.

By applying for this role your details will be submitted to Adecco. Our Candidate Privacy Information Statement explaining how we will use your information is available on our website

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.