Data & AI Solution Architect, Azure, Remote

Manchester Square
1 month ago
Applications closed

Related Jobs

View all jobs

Solution Architect, Data, AI, Microsoft Azure, Hands On, ETL, Remote

Innovation Developer

Senior Azure Data Architect

Solutions Architect

Azure Data Engineer

Azure Data Engineer

Data & AI Architect, Azure AI Services, PaaS, ETL, Data Modelling, Remote

Data & AI Architect / Microsoft Stack / Azure required to work for a fast growing Enterprise business based in Central London. However, this will be a remote role and you may have the odd meeting in London, along with some global travel (all expenses paid).

This role will be working at the forefront of AI and we need this candidate to not only have the Data Architecture experience within a Microsoft Stack environment, but we need you to have done some relevant AI solution designing too. We need you to understand Data, the Data Concepts, Natural Language Intelligence, the Deployment of off the shelf technologies etc. Ultimately, we need you to be passionate about Microsoft Technologies, AI and Data! Read on for more details…

Role responsibilities:

  • Tertiary qualifications in Information Technology, Data Science, AI, or related fields; qualifications in Architecture and Project Management are desirable.

  • A minimum of three (3) years in a senior technical role focused on data and AI, such as technical lead, team lead, or architect.

  • Knowledge of Enterprise Architecture methodologies, such as TOGAF, with a focus on data and AI.

  • Experience in assessing data and AI solutions, particularly in Business Intelligence and Data Analytics.

  • Excellent communication skills to explain data and AI concepts to non-technical audiences. Fluency in English; other languages are a plus.

  • Strong planning and organizational skills, with the ability to communicate across various levels of stakeholders.

  • Self-starter with the ability to prioritize and plan complex data and AI work in a rapidly changing environment.

  • Results-oriented with the ability to deliver data and AI solutions that provide organizational benefits.

  • Strong critical thinker with problem-solving aptitude in data and AI contexts.

  • Team player with experience leading cross-functional teams to deliver data and AI solutions.

  • Ability to develop data and AI architecture designs; experience with Service-Oriented Architectures (SOA) and AI frameworks.

  • Available to work flexible hours, with strong collaboration, communication, and business relationship skills.

  • Expert skill level experience with the following technologies:

    • Azure AI Services

    • Azure PaaS Data Services

    • Object Oriented Analysis and Design

    • CI/CD and source control

    • ETL techniques and principles

    • Data modelling

    • Master Data Management

    • Data Visualization

  • Experienced in building Microsoft AI Services

  • Reporting and analytics solutions in the Microsoft Azure ecosystem

    This is a great opportunity and salary is dependent upon experience. Apply now for more details

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.