Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Cross-Asset Risk Premia Research - Quantitative Strategist - Vice President or Executive Director

JPMorgan Chase & Co.
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Full-Stack Data Scientist

Quantitative Strategist

Data Engineer

Data Engineer

Data Engineer

Senior Data Engineer

This job is brought to you by Jobs/Redefined, the UK's leading over-50s age inclusive jobs board.

Job Description

Join J.P. Morgan's Global Research team as a Vice President or Executive Director Quantitative Strategist, where your expertise will contribute to cutting-edge research and systematic strategies. Collaborate with internal teams and present insights to external clients, leveraging your strong quantitative skills and analytical mindset.

As a Vice President or Executive Director Quantitative Strategist within our Cross-Asset Risk Premia Research team, you will conduct innovative research in cross-asset risk premia strategies, contribute to research publications, and collaborate with internal sales and structuring teams. Your role will involve presenting to external clients and participating in client meetings.

Job Responsibilities:

  • Conduct innovative research in cross-asset risk premia strategies.
  • Contribute to and originate periodic and dedicated research publications focused on systematic strategies.
  • Collaborate with internal sales and structuring teams.
  • Present research findings to external clients and participate in client meetings.

Required Qualifications, Capabilities, and Skills:

  • Master's or Ph.D. degree in a quantitative subject.
  • Strong quantitative and analytical skills.
  • Previous experience in a research or structuring department of an investment bank or relevant buy-side experience.
  • Excellent coding skills in Python.
  • In-depth knowledge of machine learning and big data.
  • Strong communication, presentation, and writing skills.
  • Team-player attitude.

Preferred Qualifications, Capabilities, and Skills:

  • Previous experience in quant fixed income and/or credit strategies is a plus.

This role encompasses the performance of UK regulated activity. The successful candidate will therefore be subject to meeting UK regulatory requirements in the assessment of fitness, propriety, knowledge and competence (as assessed by the Firm) and (where appropriate) approval by the UK Financial Conduct Authority and/or the Prudential Regulation Authority to carry out such activities.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Future of Data Science Jobs: Careers That Don’t Exist Yet

Data science has rapidly become one of the most influential disciplines of the digital age. Once a niche combination of statistics and computing, it is now central to how organisations innovate, compete, and grow. From healthcare and finance to retail, logistics, and government, data science is reshaping decision-making across every sector. In the UK, data science has grown into a core career pathway. Salaries are competitive, demand continues to rise, and roles now extend far beyond analytics into artificial intelligence, machine learning, and predictive modelling. Yet as technologies evolve, many of the most important data science careers of the future don’t exist today. This article explores why entirely new roles will emerge, the kinds of careers that may appear, how existing jobs will evolve, why the UK is well placed to lead, and what professionals can do to prepare for this transformation.

Seasonal Hiring Peaks for Data Science Jobs: The Best Months to Apply & Why

The UK's data science sector has matured into one of Europe's most intellectually rewarding and financially attractive technology markets, with roles spanning from junior data analysts to principal data scientists and heads of artificial intelligence. With data science positions commanding salaries from £30,000 for graduate data analysts to £140,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this intellectually stimulating and rapidly evolving field. Unlike traditional analytical roles, data science hiring follows distinct patterns influenced by business intelligence cycles, research funding schedules, and machine learning project timelines. The sector's unique combination of mathematical rigour, business impact requirements, and cutting-edge technology adoption creates predictable hiring windows that strategic professionals can leverage to advance their careers in extracting insights from tomorrow's data. This comprehensive guide explores the optimal timing for data science job applications in the UK, examining how enterprise analytics strategies, academic research cycles, and artificial intelligence initiatives influence recruitment patterns, and why strategic timing can determine whether you join a pioneering AI research team or miss the opportunity to develop the next generation of intelligent systems.

Pre-Employment Checks for Data Science Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in data science reflects the discipline's unique position at the intersection of statistical analysis, machine learning innovation, and strategic business intelligence. Data scientists often have privileged access to comprehensive datasets, proprietary algorithms, and business-critical insights that form the foundation of organisational strategy and competitive positioning. The data science industry operates within complex regulatory frameworks spanning GDPR, sector-specific data protection requirements, and emerging AI governance regulations. Data scientists must demonstrate not only technical competence in statistical modelling and machine learning but also deep understanding of research ethics, data privacy principles, and the societal implications of algorithmic decision-making. Modern data science roles frequently involve analysing personally identifiable information, financial data, healthcare records, and sensitive business intelligence across multiple jurisdictions and regulatory frameworks simultaneously. The combination of analytical privilege, predictive capabilities, and strategic influence makes thorough candidate verification essential for maintaining compliance, security, and public trust in data-driven insights and automated systems.