Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Credit Algorithmic Quantitative Analyst, AVP

Citigroup Inc.
London
1 day ago
Create job alert

The desk has a start-up culture where idea generation and entrepreneurship are highly valued. If you enjoy continuous learning in highly a dynamic market and taking full ownership for quant, technical, and business aspect then this role provides a lot of opportunities for to contribute from the ground-up.



  • Help design, implement, and maintain the market making algorithms and automated-response systems.
  • Run statistical analysis and perform back-testing on large datasets.
  • Ad hoc data science and ML/AI projects.
  • Development and maintenance of in-house python and q libraries.

    Most importantly the candidate should be creative, entrepreneurial and enjoy taking ownership of a project from start to finish.


  • Candidate should have experience and training in one or more of the following areas: financial engineering, machine learning, portfolio optimization and optimization theory, and/or algo pricing/market making.
  • Strong programming skills in python are required. Proficiency in KDB/q and SQL is a plus.
  • Highly technical role, experience and/or training in data science and statistical modelling are required.
  • The desk is closely integrated between traders, quants, and technologists and provides exposure to all aspects of the business. Business intuition and communication skills must be strong.
  • The candidate must be practically minded., PhD. or M.A./M.S. in a quantitative discipline such as computer science, physics, engineering or financial engineering is required.

    Working at Citi is far more than just a job. A career with us means joining a team of more than 230,000 dedicated people from around the globe. At Citi, you'll have the opportunity to grow your career, give back to your community and make a real impact., Citi is looking to hire a Credit Algo Quant to sit within Citi's European Credit Algorithmic Market Making Business which spans across Single Line Bond Request for Quotes (RFQs), Automated Market Making, Portfolio Trading, Fixed Income ETF Market Making Credit and Rates, as well as Fixed Income ETF Creation Redemption Credit and Rates.


  • The successful candidate will play a key role in the continued build out of our algorithmic and systematic trading capabilities. He will work with a team of 5+ quantitative analysts, traders and key stakeholders to continue the growth of the business.


#J-18808-Ljbffr

Related Jobs

View all jobs

Credit Quantitative Analyst, AVP

Quantitative Analyst (C++ Proficient)

Quantitative Analyst (C++ Proficient)

Quantitative Software Developer

XVACCR Quantitative Analyst

XVACCR Quantitative Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.