Contract Principal Data Analyst - Hybrid - Reading

CBSbutler Holdings Limited trading as CBSbutler
Reading
1 day ago
Create job alert

Principal Data Analyst
6-month Contract
£70 - £83 per hour insideIR35
Based in Reading - hybrid working - 2-3 days onsite per week
SC Clearance is essential for this role

Urgently hiring for a Contract Principal Data Analyst to drive advanced analytics solutions, shape enterprise data practices, and lead innovation across complex environments.

Responsibilities:

  • Lead the design and delivery of advanced analytics and reporting solutions
  • Own data modelling, dashboard design, and scalable reporting frameworks
  • Define governance, security, and quality standards
  • Partner with architects, engineers, and business leaders to influence data strategy
  • Mentor and develop analysts within a collaborative team

    Skills and Experience:
  • Strong expertise in SQL and data warehousing
  • Advanced Power BI / Tableau dashboard development
  • Deep understanding of data lifecycle, governance, and quality
  • Experience in cloud or hybrid data environments
  • Proven ability to influence technical decisions and communicate insights clearly
  • Experience working in Agile / DevOps environments
  • Python and ML would be an added advantage.

    Please apply for immediate interview.

    CBSbutler is operating and advertising as an Employment Agency for permanent positions and as an Employment Business for interim / contract / temporary positions. CBSbutler is an Equal Opportunities employer and we encourage applicants from all backgrounds

Related Jobs

View all jobs

Principal Data Analyst

Data Governance Analyst

Principal Data Architect

Data Architect

GCP Data Architect

GCP Data Architect

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.