Consultant/Senior Consultant

Amsterdam
2 weeks ago
Create job alert

Job Title: Data Science - Management Consulting - GenAI

Location: Amsterdam

Salary: €(phone number removed) + Bonus

Are you a client-facing data scientist, passionate about driving top-line growth through data-driven insights? As a Consultant in the Data Science team at this boutique consultancy, you will play a pivotal role in helping clients optimize their customer journeys and improve operational efficiencies. You'll work with cutting-edge technologies to lead advanced analytics initiatives across industries and collaborate with cross-functional teams to solve complex business problems.

What you'll be doing:

Analytics & Insights:

Oversee the design, development, and deployment of sophisticated analytics models to uncover deep insights into pricing, customer behaviour, and business dynamics.
Implement advanced machine learning and statistical techniques to predict trends and optimize operational efficiencies.
Provide actionable insights and strategic recommendations to senior stakeholders.
Collaboration & Influence:

Collaborate with teams across industries to embed analytics solutions into all facets of the business.
Support client IT teams in embedding scalable data architecture and data warehousing solutions.
Serve as a trusted advisor to clients, ensuring successful deployment and integration of advanced analytics initiatives.
Performance & Reporting:

Monitor key performance indicators (KPIs) to measure the impact of analytics efforts.
Continuously evaluate the effectiveness of tools, methodologies, and data models, recommending improvements to enhance performance.
What you bring to the table:

A degree in a quantitative field (e.g., Computer Science, Engineering, Statistics, Data Science, etc.), or equivalent experience.
Extensive experience in advanced analytics, with a commercial or consulting background.
Strong programming skills in Python and experience with developing ML/statistical models, particularly in pricing (e.g., price elasticity, revenue management, dynamic pricing).
Experience with data visualization tools (e.g., Tableau, PowerBI) and data management platforms (e.g., SQL, Snowflake, Databricks).
A passion for building high-performing teams and creating a collaborative, data-driven culture.
Excellent written and verbal communication skills, with the ability to simplify complex topics for non-technical audiences.
An entrepreneurial mindset, ready to take on new challenges and grow within a fast-paced, expanding team

Related Jobs

View all jobs

SAP Data Migration Consultant/ Senior Consultant

SAP Data Migration Consultant/ Senior Consultant

Operational Analyst Consultant

Senior Operational Analyst Consultant

Senior Data Engineer & Consultant

Senior Finance Business Controller

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.