National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Clinical Data Scientist

PSI CRO
Oxford
5 months ago
Applications closed

Related Jobs

View all jobs

Senior Clinical Data Scientist

Senior Data Scientist

Senior Data Scientist

Data Scientist

Lead Data Science Researcher

Lead Data Science Researcher

Job Description

Reporting to the Clinical Data Science Manager, the Clinical Data Scientist is an integral part of our team here at PSI. You will work with clinical trials patient and operational data, develop new data solutions and set up Risk-based Monitoring systems in Process Improvement department.

Hybrid work in Oxford

  • Participate in selection of the Risk-Based Monitoring (RBM) system and provide relevant training to the project team and/or Sponsor
  • Set up and maintain RBM systems, collaborating with the Central Monitoring Manager
  • Manage complex datasets from multiple sources, including data extraction, transformation, and loading into PSI data platform
  • Program and produce data listings, tables, and figures for Clinical Data Reviewers and Central Monitoring Managers
  • Calculate Key Risk Indicators and Quality Tolerance Limits, applying advanced analytical techniques to identify data trends for Centralized Monitoring
  • Collaborate cross-functionally to identify study challenges and develop data solutions using advanced analytics
  • Communicate data findings and solutions to stakeholders effectively
  • Contribute to the development of databases, software products, processes, and Quality System Documents for Centralized Monitoring


Qualifications

Must have:

  • Degree in Data Science, Mathematics, Statistics, Computer Science or equivalent; or relevant work experience and professional qualifications
  • At least 5 years of experience in Data Management, Biostatistics, and Centralized Monitoring
  • At least 4 years of experience in one or more of the following: R, R Shiny, SAS, SQL and associated packages and libraries
  • At least 2-year experience in data engineering area including one or more of the following: relationship databases, data warehousing, data schemas, data stores, data modeling, testing, validation and analysis
  • Full professional proficiency in English
  • Strong analytical an logical thinking
  • Communication and collaboration skills

Nice to have:

  • Experience with CluePoints RBM system
  • Knowledge of statistical methods and techniques for analyzing data
  • Experience with using Machine Learning technics and products testing and validation



Additional Information

What we offer:

  • We value your time so the recruitment process is as quick as 3 meetings
  • We'll prepare you to do your job at highest quality level with our extensive onboarding and mentorship program
  • You'll have excellent working conditions - spacious and modern office in convenient location, and friendly, supportive team who love to hang out together 
  • You'll have permanent work agreement at a stable, privately owned company
  • We care about our employees - aside from competitive salary, you'll have good work-life balance with flexible working hours and additional days off, life and medical insurance, sports card, lunch card 
  • We're constantly growing which means opportunities for personal and professional growth 

Make the right call and take your career to a whole new level. Join the company that focuses on its people and invests in their professional development and success.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Data Science Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

The ability to communicate clearly is now just as important as knowing how to build a predictive model or fine-tune a neural network. In fact, many UK data science job interviews are now designed to test your ability to explain your work to non-technical audiences—not just your technical competence. Whether you’re applying for your first data science role or moving into a lead or consultancy position, this guide will show you how to structure your presentation, simplify technical content, design effective visuals, and confidently answer stakeholder questions.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.