CDI - Data Engineer (Data Science)

Havas Market France
Leeds
22 hours ago
Create job alert
CDI - Data Engineer (Data Science)

Havas Market France – Leeds, England, United Kingdom


Overview

Reporting to: Head of Data Science. Hiring Manager leyendo data science’s. Office Location: BlokHaus West Park, Ring Rd, Leeds LS16 6QG.


About Us – Havas Media Network

HMN employs over 900 people in the UK & Ireland, passionate about creating more meaningful brands through valuable experiences. Our mission: to make a meaningful difference to brands, businesses, and lives.


HMN UK spans London, Leeds, Manchester & Edinburgh and serves clients through passionate agencies: Ledger Bennett, Havas Market, Havas Media, Arena Media, DMPG and Havas Play Network.


This role is part of Havas Market, a performance‑focused digital marketing agency.


Values

  • Human at Heart: Respect, empower, and support others to create an inclusive workplace and meaningful experiences.
  • Head for Rigour: Deliver high‑quality, outcome‑focused work and continuously improve.
  • Mind раствор! ame: Embrace diversity and bold thinking to innovate and craft unique solutions.

The Role

In this position you will deliver a wide variety of projects for clients and internal teams by building data pipelines, predictive models, and insightful analytics. You will work within a small, collaborative team that values cloud‑agnostic fundamentals and self‑sufficiency above platform expertise.


Key Responsibilities

  • Build and maintain data pipelines to integrate entsprechende marketing platform APIs (Google Ads, bijvoorbeeld, Meta, Tik Tok, etc.) with cloud data warehouses, including custom API development where connectors are unavailable.
  • Develop and optimise SQL queries and transformations in BigQuery and AWS to aggregate campaign performance data, customer behaviour metrics, and attribution models for reporting and analysis.
  • Design and implement data models that combine first‑party customer data with marketing performance data to enable cross‑channel analysis and audience segmentation.
  • Deploy containerised data solutions using Docker and Cloud Run, ensuring reliable operation at scale with proper error handling and monitoring.
  • Implement statistical techniques (time‑series forecasting, propensity modeling, multi‑touch attribution) to build predictive models for campaign optimisation.
  • Develop, test, and deploy machine‑learning models into production following MLOps best practices such as versioning, monitoring, and automated retraining.
  • Translate client briefs and business stakeholder requirements into technical specifications, delivery plans, and realistic time estimates.
  • Configure and maintain CI/CD pipelines in Azure DevOps to automate testing, deployment, and infrastructure provisioning for data and ML projects.
  • Produce clear technical documentation: architecture diagrams, data dictionaries, and implementation guides to support knowledge sharing and handovers.
  • Participate in code reviews, providing constructive feedback on SQL, Python, and infrastructure configurations to maintain code quality.
  • Provide technical consultation to clients on topics such as data architecture, measurement strategy, and feasibility of ML applications.
  • Support analytics and BI teams by creating reusable data assets, troubleshooting data‑quality issues, and building datasets for self‑service reporting.
  • Train and mentor junior team members through pair programming, code reviews, and guided project work on data engineering and ML workflows.
  • Implement workflow orchestration using tools like Kubeflow to coordinate complex multi‑step pipelines with dependency management and retry logic.
  • Stay current with developments in cloud data platforms, digital marketing measurement, and ML techniques relevant to performance marketing.
  • Identify and implement improvements to infrastructure, workflows, and data‑quality processes.

Core Skills and Experience

  • Expert proficiency in Python for robust APIs, scripting, and maintaining complex data / ML codebases.
  • Strong SQL expertise and deep familiarity with data‑warehousing concepts for BigQuery.
  • Practical experience with Docker, Linux, and Cloud Run deployments.
  • Advanced Git skills and active participation in pull‑request reviews for code quality.
  • Solid understanding of CI/CD principles and pipeline management, preferably using Azure DevOps.
  • Proven ability to understand and apply technical documentation to transform broad business requirements into detailed technical specifications.
  • Excellent written and verbal communication for knowledge sharing, constructive pull‑request feedback, daily stand‑ups, and process documentation.

Beneficial Skills and Experience

  • Hands‑on experience with major cloud ML platforms focusing on MLOps workflow patterns.
  • Experience with stream or batch processing tools such as GCP Dataflow or orchestrators like Apache Beam.
  • Familiarity with Python ML frameworks and data‑modeling tools such as Dataform/dbt.

Contract Type

Permanent


Seniority & Employment

bottled or level: Mid‑Senior. Employment Type: Full‑time.


Industry

Business Consulting and Services.


Here at Havas across the group we pride ourselves on being committed to offering equal opportunities to all potential employees and have zero tolerance for discrimination. We are an equal opportunity employer and welcome applicants irrespective of age, sex, race, ethnicity, disability, and other factors that have no bearing on an individual’s ability to perform their job.


Referrals increase your chances of interviewing at Havas Market France by 2x.


#J-18808-Ljbffr

Related Jobs

View all jobs

Remote Senior Biostatistician - Oncology Registrations & SAS

Senior Biostatistician – Remote Oncology Trials

Head of Research Data Services, Global Data Sciences, Oncology Therapy Area, Research and Devel[...]

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.