National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Bioinformatic Software Engineer

York Place
1 week ago
Create job alert

Join an exciting biotech start-up in Edinburgh that’s developing next-generation technology relating to RNA sequencing, bioinformatics, and diagnostic development. Backed by academic expertise and driven by a mission to advance precision medicine, this agile team is developing tools to transform how RNA is discovered and analysed. As the company scales, it’s looking for a Bioinformatic Software Engineer to lead the build-out of cloud infrastructure and analysis pipelines critical to its technology platform.

This is an opportunity to join a growing, cross-functional team working on meaningful challenges in biology and data science, where your ideas and engineering skills will have a direct impact on product development and scientific discovery.

Bioinformatic Software Engineer responsibilities

Design, develop, optimise, and maintain cloud computing environments for bioinformatic data processing.

Build scalable, well-documented data analysis pipelines for long-read RNA sequencing workflows.

Develop and implement logging, reporting, and data archiving systems to support reproducible research.

Lead software engineering best practices, including testing, version control, deployment, and documentation.

Generate visualisations and reports to communicate key findings from complex transcriptomic datasets.

Collaborate closely with biologists, data scientists, and product stakeholders across the business.

Bioinformatic Software Engineer requirements:

Proven software engineering and DevOps experience within a research or R&D setting.

Strong understanding of sequencing data analysis, particularly read alignment and variant calling algorithms.

Degree educated in Computer Science, Bioinformatics, or a related field.

At least 3 years' relevant experience, ideally with RNAseq data and associated tool development.

Solid programming skills in object-oriented languages and scripting languages (e.g. Python, Perl, Bash).

Experience with software quality assurance practices such as version control, testing, and validation.

Desirable experience:

Commercial experience in a software or biotech setting.

Cloud computing experience (e.g. AWS, GCP, or Azure).

Familiarity with Unix/Linux systems.

Knowledge of transcriptomic technologies such as Illumina, PacBio, or Nanopore.

Understanding of transcriptome annotation and the impact of alternative splicing.

Skills in R, C++, or similar for statistical analysis and visualisation.

Personal Attributes:

Curious and proactive, with a desire to learn and ask questions.

Strong communicator, able to collaborate across disciplines.

Thoughtful problem-solver with a strategic mindset.

Open, respectful, and team-oriented in working style.

This is a rare chance to join a well-supported start-up at an exciting stage of growth. You will be working on complex scientific problems with a direct line to product impact, in a collaborative environment where your contributions will shape the company’s direction and technology.

£Comp + company benefits

Bioinformatics/Software Engineering/RNA Seq/Python

Related Jobs

View all jobs

Data Engineer

Orchard Therapeutics: Data Scientist, MSAT

Principal / Senior Data Scientist

Principal / Senior Data Scientist

Data Scientist, MSAT

Head of Data Science

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Data Science Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

The ability to communicate clearly is now just as important as knowing how to build a predictive model or fine-tune a neural network. In fact, many UK data science job interviews are now designed to test your ability to explain your work to non-technical audiences—not just your technical competence. Whether you’re applying for your first data science role or moving into a lead or consultancy position, this guide will show you how to structure your presentation, simplify technical content, design effective visuals, and confidently answer stakeholder questions.

Data Science Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide—refreshed every quarter—so you always know who’s really expanding their data‑science teams. Budgets for predictive analytics, GenAI pilots & real‑time decision engines keep climbing in 2025. The UK’s National AI Strategy, tax relief for R&D & a sharp rise in cloud adoption mean employers need applied scientists, ML engineers, experiment designers, causal‑inference specialists & analytics leaders—right now. Below you’ll find 50 organisations that have advertised UK‑based data‑science vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the kind of employer—& culture—that suits you. For every company you’ll see: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, mission, culture) Search any employer on DataScience‑Jobs.co.uk to view current ads, or set up a free alert so fresh openings land straight in your inbox.

Return-to-Work Pathways: Relaunch Your Data Science Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like stepping into a whole new world—especially in a dynamic field like data science. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s data science sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve gained and provide mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for data science talent in the UK Leverage your organisational, communication and analytical skills in data science roles Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to data science Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to data science Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as a data analyst, machine learning engineer, data visualisation specialist or data science manager, this article will map out the steps and resources you need to reignite your data science career.