Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Big Data Lead (07/05/2025)

Hirewand
London
6 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Senior Lead Data Engineer

Lead Data Scientist

Lead Data Engineer

Lead Data Architect

Lead Data Engineer

Job Type: Contract Job Location: Wimbledon , UK JobDescription: For this role, senior experience of Data Engineeringand building automated data pipelines on IBM Datastage & DB2,AWS and Databricks from source to operational databases through tocuration layer is expected using the latest cloud moderntechnologies where experience of delivering complex pipelines willbe significantly valuable to how to maintain and deliver worldclass data pipelines. Knowledge in the following areas essential: -Databricks: Expertise in managing and scaling Databricksenvironments for ETL, data science, and analytics use cases. - AWSCloud: Extensive experience with AWS services such as S3, Glue,Lambda, RDS, and IAM. - IBM Skills: DB2, Datastage, Tivoli WorkloadScheduler, Urban Code - Programming Languages: Proficiency inPython, SQL. - Data Warehousing & ETL: Experience with modernETL frameworks and data warehousing techniques. - DevOps &CI/CD: Familiarity with DevOps practices for data engineering,including infrastructure-as-code (e.g., Terraform, CloudFormation),CI/CD pipelines, and monitoring (e.g., CloudWatch, Datadog). -Familiarity with big data technologies like Apache Spark, Hadoop,or similar. - ETL/ELT tools and creating common data sets acrosson-prem (IBMDatastage ETL) and cloud data stores - Leadership &Strategy: Lead Data Engineering team(s) in designing, developing,and maintaining highly scalable and performant datainfrastructures. - Customer Data Platform Development: Architectand manage our data platforms using IBM (legacy platform) &Databricks on AWS technologies (e.g., S3, Lambda, Glacier, Glue,EventBridge, RDS) to support real-time and batch data processingneeds. - Data Governance & Best Practices: Implement bestpractices for data governance, security, and data quality acrossour data platform. Ensure data is well-documented, accessible, andmeets compliance standards. - Pipeline Automation &Optimisation: Drive the automation of data pipelines and workflowsto improve efficiency and reliability. - Team Management: Mentorand grow a team of data engineers, ensuring alignment with businessgoals, delivery timelines, and technical standards. - Cross CompanyCollaboration: Work closely with all levels of business stakeholderincluding data scientists, finance analysts, MI andcross-functional teams to ensure seamless data access andintegration with various tools and systems. - Cloud Management:Lead efforts to integrate and scale cloud data services on AWS,optimising costs and ensuring the resilience of the platform. -Performance Monitoring:Establish monitoring and alerting solutionsto ensure the high performance and availability of data pipelinesand systems to ensure no impact to downstream consumers.#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.