Big Data Lead (07/05/2025)

Hirewand
London
8 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer — Lead Big Data & AI Solutions

Senior Data Architect: Lead Big Data & Analytics

Lead Data Scientist

Big Data Engineer

Big Data Engineer

Senior Data Engineer: Lead Scalable Big Data Solutions

Job Type: Contract Job Location: Wimbledon , UK JobDescription: For this role, senior experience of Data Engineeringand building automated data pipelines on IBM Datastage & DB2,AWS and Databricks from source to operational databases through tocuration layer is expected using the latest cloud moderntechnologies where experience of delivering complex pipelines willbe significantly valuable to how to maintain and deliver worldclass data pipelines. Knowledge in the following areas essential: -Databricks: Expertise in managing and scaling Databricksenvironments for ETL, data science, and analytics use cases. - AWSCloud: Extensive experience with AWS services such as S3, Glue,Lambda, RDS, and IAM. - IBM Skills: DB2, Datastage, Tivoli WorkloadScheduler, Urban Code - Programming Languages: Proficiency inPython, SQL. - Data Warehousing & ETL: Experience with modernETL frameworks and data warehousing techniques. - DevOps &CI/CD: Familiarity with DevOps practices for data engineering,including infrastructure-as-code (e.g., Terraform, CloudFormation),CI/CD pipelines, and monitoring (e.g., CloudWatch, Datadog). -Familiarity with big data technologies like Apache Spark, Hadoop,or similar. - ETL/ELT tools and creating common data sets acrosson-prem (IBMDatastage ETL) and cloud data stores - Leadership &Strategy: Lead Data Engineering team(s) in designing, developing,and maintaining highly scalable and performant datainfrastructures. - Customer Data Platform Development: Architectand manage our data platforms using IBM (legacy platform) &Databricks on AWS technologies (e.g., S3, Lambda, Glacier, Glue,EventBridge, RDS) to support real-time and batch data processingneeds. - Data Governance & Best Practices: Implement bestpractices for data governance, security, and data quality acrossour data platform. Ensure data is well-documented, accessible, andmeets compliance standards. - Pipeline Automation &Optimisation: Drive the automation of data pipelines and workflowsto improve efficiency and reliability. - Team Management: Mentorand grow a team of data engineers, ensuring alignment with businessgoals, delivery timelines, and technical standards. - Cross CompanyCollaboration: Work closely with all levels of business stakeholderincluding data scientists, finance analysts, MI andcross-functional teams to ensure seamless data access andintegration with various tools and systems. - Cloud Management:Lead efforts to integrate and scale cloud data services on AWS,optimising costs and ensuring the resilience of the platform. -Performance Monitoring:Establish monitoring and alerting solutionsto ensure the high performance and availability of data pipelinesand systems to ensure no impact to downstream consumers.#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.