Backend Software Engineer

CATCHES
Newcastle upon Tyne
3 weeks ago
Applications closed

Related Jobs

View all jobs

Senior Backend Engineer - Data Engineer

Software Engineer

QA Engineer

Full-Stack C#, Blazor Developer

Lead Back-end Engineer

Bioinformatic Software Engineer

Location:Fully remote with the opportunity of working in a co-working space local to you


About:

CATCHES are a SaaS start-up backed by some of the most influential names in luxury fashion globally. We've partnered with the global leaders in cloud computing and AI to integrate advanced 3D rendering, Artificial Intelligence (AI) and Visual Effects (VFX) techniques to create unparalleled shopping experiences for luxury fashion and exclusive events.


Role:

We are seeking a highly skilled Backend Software Engineer to join our team. The ideal candidate will have experience building APIs and backend services, ideally in C#.NET.

In this role, you’ll build robust, scalable, and secure backend systems powering our SaaS platform. You will collaborate closely with the frontend team, data engineers, and other stakeholders to deliver high-quality software solutions that meet our product's needs.

You’ll have input into technical direction and contribute to shaping backend architecture as we scale.


Responsibilities:

  • Design, develop, and maintain APIs and services primarily usingC#.NET.
  • Build scalable, fault-tolerant systems for a cloud-native environment (primarilyGCP).
  • Implement event-driven workflows usingRabbitMQ.
  • Collaborate with product, design, data, and frontend teams to ship end-to-end features.
  • Own your code in production, participate in code reviews, and improve system observability.
  • Champion clean code, security best practices, and scalable architecture.


Requirements:

  • 4+ years experience building backend systems, ideally in C#.NET.
  • Solid grasp ofPostgreSQLor equivalent relational databases.
  • Cloud deployment experience (GCP preferred, but AWS/Azure welcome).
  • Comfort withevent-driven architecturesandmessage queues.
  • Experience shipping production-grade systems with performance, security, and observability in mind.
  • Ability to work independently in a fast-moving, startup environment.
  • Strong communication skills and a collaborative mindset.
  • Experience delivering pragmatic solutions and implementing iterative design approaches.
  • Strong understanding of engineering fundamentals, including design patterns, SOLID principles, and clean code.


Nice to Have:

  • NoSQL Database experience.
  • Experience withKubernetesor other orchestration systems.
  • Exposure tobare metaldeployments or hybrid cloud environments.
  • DevOps practices: Infrastructure as Code, monitoring, and alerting.
  • Some experience with frontend development or WebGL/3D rendering pipelines.


What Working with Catches Looks Like:

  • Workfully remotewith optional coworking access.
  • Be part of asmall, experienced teamthat values shipping, experimentation, and autonomy.
  • Contribute early to product and architecture decisions.
  • Use cutting-edge tech to shape the future of immersive eCommerce.
  • Enjoy startup pace without burnout: async-first, high ownership, minimal meetings.


Tech Stack:

  • Languages: C#.NET (primary), Go, Python.
  • Databases: Postgres, Redis.
  • Messaging: RabbitMQ.
  • Infra: Docker, Kubernetes, GCP (primary), AWS, Azure & bare-metal.
  • CI/CD: GitHub Actions.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.

Data Science Jobs in the Public Sector: Exploring Opportunities Across GDS, NHS, MOD, and More

Data science has emerged as one of the most influential fields in the 21st century, transforming how organisations make decisions, improve services, and solve complex problems. Nowhere is this impact more visible than in the UK public sector. From the Government Digital Service (GDS) to the National Health Service (NHS) and the Ministry of Defence (MOD), government departments and agencies handle vast amounts of data daily to support the well-being and security of citizens. For data enthusiasts looking to make a meaningful contribution, data science jobs in the public sector can offer rewarding roles that blend innovation, large-scale impact, and societal benefit. In this comprehensive guide, we’ll explore why data science is so pivotal to government, the roles you might find, the skills needed, salary expectations, and tips on how to succeed in a public sector data science career.

Contract vs Permanent Data Science Jobs: Which Pays Better in 2025?

Data science sits at the intersection of statistics, machine learning, and domain expertise, driving crucial business decisions in almost every sector. As UK organisations leverage AI for predictive analytics, customer insights, and automation, data scientists have become some of the most in-demand professionals in the tech job market. By 2025, data scientists with expertise in deep learning, natural language processing (NLP), and MLOps are commanding top-tier compensation packages. However, deciding whether to become a day‑rate contractor, a fixed-term contract (FTC) employee, or a permanent member of an organisation can be challenging. Each path offers a unique blend of earning potential, career progression, and work–life balance. This guide will walk you through the UK data science job market in 2025, examine the differences between these three employment models, present sample take‑home pay scenarios, and offer strategic considerations to help you determine the best fit for your career.