Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

AWS Data Engineer VP - Top Investment Bank

Caspian One
London
1 week ago
Create job alert

About the Role

Join a mission-critical team within our firm’s cutting-edge platform engineering function, supporting platform for front-office developers (quants and strategists). This is a unique opportunity to remain hands-on in engineering while also leading a focused, high-impact team.


You’ll be at the forefront of data and cloud-native engineering, working with modern technologies across AWS, On-premise kubernetes, Python, and data pipelines, while engaging directly with key internal platforms and front-office business developers. If you are passionate about solving hard technical problems, staying current with trends like AI Engineering, and want to make a difference in a globally respected financial institution, this role is for you.


The successful Senior AWS Data Engineer candidate will have the chance to make a significant impact in designing the platform and working on cutting-edge technologies like Databricks and Snowflake in the heart of a leading global Investment Banks’ front-office. This is a rare greenfield role that offers the opportunity to solve the ultimate data pipeline challenge faced by all banks, working closely with various businesses and gaining an overview of many different sectors.


What We’re Looking For

  • 10 + years, hands-on experience in AWS data engineering technologies, including Glue, PySpark, Athena, Iceberg, Databricks, Lake Formation, and other standard data engineering tools.
  • Strong experience engineering in a front-office/capital markets environment.
  • Previous experience in implementing best practices for data engineering, including data governance, data quality, and data security.
  • Proficiency in data processing and analysis using Python and SQL.
  • Experience with data governance, data quality, and data security best practices.
  • Strong knowledge of market data and its applications.
  • Understanding of Generative AI concepts, along with hands-on experience in developing and deploying AI applications in real-world environments.


Leadership Responsibilities

  • To contribute or set strategy, drive requirements and make recommendations for change. Plan resources, budgets, and policies; manage and maintain policies/ processes; deliver continuous improvements and escalate breaches of policies/procedures.
  • Lead a number of specialists to influence the operations of a department, in alignment with
  • strategic as well as tactical priorities, while balancing short and long term goals and ensuring that budgets and schedules meet corporate requirements.
  • Demonstrate a clear set of leadership behaviours to create an environment for colleagues to thrive and deliver to a consistently excellent standard.
  • Advise key stakeholders, including functional leadership teams and senior management on functional and cross functional areas of impact and alignment.
  • Manage and mitigate risks through assessment, in support of the control and governance agenda.
  • Demonstrate comprehensive understanding of the organisation functions to contribute to achieving the goals of the business.


Nice to Have

  • Experience with other data engineering tools and technologies.
  • Knowledge of Machine Learning / AI and data science concepts.


Accountabilities

  • To build and maintain the systems that collect, store, process, and analyse data, such as data pipelines, data warehouses and data lakes to ensure that all data is accurate, accessible, and secure.
  • Build and maintenance of data architectures pipelines that enable the transfer and processing of durable, complete and consistent data.
  • Design and implementation of data warehoused and data lakes that manage the appropriate data volumes and velocity and adhere to the required security measures.
  • Development of processing and analysis algorithms fit for the intended data complexity and volumes.
  • Collaboration with data scientist to build and deploy machine learning models.

Related Jobs

View all jobs

AWS Lead Data Engineer

Senior Data Architect

Principal Data Engineer (Azure, PySpark, Databricks)

AWS Data Engineer

AWS Data Engineer

AWS Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.